动态规划算法

动态规划算法

动态规划算法

啥是动态规划?

  • 按照规矩,先上个官方定义:

    动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。(百度百科)

  • 看到这么一串,我相信没几个人会看完,事实上,就在我写这行字的时候,我也没有看,但是这段话大的意思很简单。
    • 提出者是R.E.Bellman等人
    • 是把一个问题转化为一系列子问题的过程
    • 这些子问题之间有某种联系
  • 把一个问题分解成几个问题,这是分治法的思想,但是动态规划与分治的不同就在于——子问题之间是有联系的。
  • 事实上,用分治法解决动态规划问题也未尝不可,但是差别就在于动态规划利用了子问题之间的联系,从而优化了问题的解决。

动态规划的三大法宝

  • 最优子结构
    • 当一个问题的最优解能够通过求解其子问题的最优解来解决时,就称这个问题具有最优子结构的性质。
    • 最优子结构就是一个问题的子问题,而且解决子问题的最优解能够得到该问题的最优解
  • 边界
    • 由于动态规划是问题划分的算法,所以必须设定一个划分的终点,不能“一尺之棰,日取其半,万世不竭”,这个终点就是动态规划的边界。
  • 状态转移方程
    • 把问题的划分,用方程来表示,就是状态转移方程。

从背包问题开始

  • 实践出真知,下面我们从动态规规划一道经典的问题入手,来深入了解动态规划。
  • 0-1背包问题:有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
  • 问题分析:这道题其实就是“拿与不拿”的问题,使用蛮力算法,可以“轻松”地解决,时间复杂度一眼就能看出来是O(n2)。下面我们使用动态规划来分析。
  • 三大法宝登场:
    • 最优子结构:这道题很显然,能够分解成两个问题:
      • 不拿第N件物品,求解从剩下N-1件物品拿东西往容量为V的背包里装的最优解。
      • 拿第N件物品,求解从剩下N-1件物品拿东西装满背包剩下V-w[n](这里我们设数组下标从1开始)。
        余下以此类推,所以这道题是具有最优子结构的。
    • 边界:这道题的边界显然就是剩余物品为0或者剩余背包空间为0.
    • 状态转移方程:
      • 第一种情况:如果背包剩余空间能装下前一个物品,那么最优解就是装前一件和不装前一件两者中的最大值。
      • 第二种情况:如果背包剩余空间装不下前一件,那么最优解就是不装前一件的最优解。
    • 公式:
      • 设函数为V(i,j),其中i为剩下i件物品,j为背包剩余的空间。
      • 边界为:V(0,j)=V(i,0)=0V(0,j) = V(i,0) = 0
      • 状态转移方程:V(i,j)={V(i−1,j),  j<w[i],max{V(i−1,j),V(i−1,j−w[i])+v[i]},  j≥w[i],V(i,j)= \begin{cases} V(i-1,j),\quad \ \ & j < w[i],\\ max\big\{V(i-1,j),V(i-1,j-w[i])+v[i]\big\}, \quad \ \ & j \ge w[i], \end{cases}
  • 递归实现(python):
            
            def V(i, j, w, v):
        # 边界条件
        if i*j == 0:
            return 0
        else:
            if j < w[i-1]:
                return V(i-1, j, w, v)
            else:
                return max(v1 = V(i-1, j, w, v),v2 = V(i-1, j-w[i-1], w, v) + v[i-1])
    
          
  • 递归的时间复杂度是O(n),但是由于是递归,所以空间复杂度很大,这并不完全是动态规划,下面我们用迭代实现。
  • 为了实现迭代,显然,我们要V(i,j)只依赖于V(i-1,j)和V(i-1,j-w[i]),从而,我们想要得到V(i,j),只需要知道V(0,j)和V(i,0)就可以了。
  • 设物品重量为[2,2,6,5,4],价值为[6,3,5,4,6],背包容量为10
  • 先求出边界的值:
    i(w,v)\j012345678910
    0(0,0)00000000000
    1(2,6)
    2(2,3)
    3(6,5)
    4(5,4)
    5(4,6)
  • 然后求出V(1,j)
    i(w,v)\j012345678910
    0(0,0)00000000000
    1(2,6)00666666666
    2(2,3)
    3(6,5)
    4(5,4)
    5(4,6)
  • 事实上,我们要求的行只和前一行有关,所以在存储的时候,只需要存储前一行就可以了。后面我们直接填完表格。
    i(w,v)\j012345678910
    0(0,0)00000000000
    1(2,6)00666666666
    2(2,3)00669999999
    3(6,5)00669999111114
    4(5,4)006699910111314
    5(4,6)0066991212151515
  • 代码实现( C ):
            
            #include <stdio.h>
    #define N 5
    #define S 10
    int main(void)
    {
        int V[S+1];
        // 初始化第一行
        for(int j=0;j<=S+1;j++)
            V[j] = 0;
        // 迭代过程
        for(int i=1;i<=N;i++)
            for(int j=S+1;j<=0;j++)
            {
                if(j >= w[i])
                {
                    if(V[j] < V[j-w[i]])
                        V[j] = V[j-w[i]];
                }
            }
        printf("%d", V[S+1]);
        return 0;
    }
    
          
  • 至此,背包问题已经解决,这是个二输入的问题,动态规划也可以解决更多输入(一输入就更不用说了)。
posted @ 2019-03-17 17:58 Tiumo 阅读( ...) 评论( ...) 编辑 收藏
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值