D2D与NOMA网络多目标资源分配

基于切比雪夫方法的D2D与多载波非正交多址接入网络多目标资源分配

摘要

本文研究了在共享相同频谱的设备到设备(D2D)通信中的资源分配问题。具体而言,蜂窝用户(CU)采用非正交多址接入(NOMA),而D2D用户(DU)采用正交频分多址接入(OFDMA)。提出了一个多目标优化问题(MOOP),该问题在考虑D2D用户和蜂窝用户的最大发射功率预算及最低数据速率要求的同时,联合最大化上行通信中D2D用户和蜂窝用户的总速率。利用加权切比雪夫方法处理该多目标优化问题(MOOP),将其转换为单目标优化问题(SOOP)。然后,采用单调优化方法对该单目标优化问题(SOOP)进行最优求解。数值结果揭示了一种有趣的权衡关系 g D2D与蜂窝用户之间的权衡

I. 引言

设备到设备(D2D)通信作为一种创新范式,被广泛推广以提升第五代(5G)蜂窝网络及后续网络的网络性能和系统资源利用率。D2D通信的功率与信道分配需要与蜂窝用户(CU)进行精细协调,因为D2D用户(DU)可能对其他用户造成干扰[1]。在实际应用中,D2D通信与现有蜂窝用户共存,可采用叠加模式或叠加模式运行。事实上,叠加模式具有吸引力,因其允许D2D用户与蜂窝用户共享频谱,从而提高系统的频谱效率[2]。

非正交多址接入(NOMA)已被提出作为超越5G的基本技术之一,以在系统频谱效率(SE)和用户公平性之间实现更好的平衡[3]。因此,NOMA与设备到设备通信的融合受到了广泛关注,以提升用户连接性和频谱效率[4],[5]。在这方面,资源分配是一个具有挑战性的问题,能够有效缓解干扰,从而提高系统频谱效率。在[4],中,在使用连续干扰消除(SIC)检测复用信号的同时,优化了资源块分配和功率分配,以最大化D2D对的总数据速率。

在[5],中,根据干扰状态,考虑了配对的设备用户和蜂窝用户所采用的不同NOMA辅助的频谱共享模式(即D2D接入方案)。然后,在保证蜂窝用户和设备用户解码阈值的前提下,结合模式选择、用户配对和功率控制,构建了一个以最大化连接性为目标的问题,以充分利用NOMA与D2D融合结构。在[6],中,作者提出了一种创新的资源分配策略,以增强叠加于蜂窝用户之下的设备到设备通信性能下行链路(DL)。对于由蜂窝用户和设备用户组成的网络[7],,研究了功率分配与用户聚类问题,同时最大化基于NOMA的网络的总速率。在[8],中,提出了一种针对支持D2D的异构网络中结合NOMA的联合功率分配与用户调度方案,旨在最大化小小区中近端用户的遍历和速率,同时保证远端用户和宏小区用户的服务质量要求。文献[9]中的作者为支持D2D的NOMA网络提供了一个联合优化框架,该框架在考虑基于NOMA的蜂窝用户设备的SIC解码顺序的同时,最大化设备到设备通信的性能。在[10],中,研究了支持D2D的NOMA蜂窝网络中的模式选择与资源分配问题。然而,在NOMA系统中引入了D2D通信的叠加模式,以利用SIC消除D2D对与蜂窝用户之间的干扰,从而最大化系统总速率。在[11],中,考虑了一种NOMA增强型设备到设备通信方案,并通过优化子信道与功率分配来最大化系统总速率。随后,提出了一种解决方案,将子信道分配给D2D组,并为每个D2D组中的接收机分配功率。文献[12]中的作者研究了D2D叠加蜂窝网络中上行多载波NOMA的资源分配问题,并将每个用户的纳什积最大化问题建模为纳什讨价还价博弈进行研究。

尽管文献中已取得丰硕成果,但由于D2D和蜂窝的冲突目标会带来严重的网络性能瓶颈,D2D通信的性能仍可进一步提升。在文献中,多目标优化问题(MOOP)框架被用于解决无线系统中的冲突目标[13]‐[15]。针对这一点,[13]中的作者提出了一个MOOP,通过最大化信干噪比(SINR)来确定每个D2D对的最优功率分配。[14]中分析了MOOP权衡,以研究D2D底层系统中EE与SE之间的权衡。该问题通过ε‐方法被转化为单目标优化问题(SOOP),并提出了一种两阶段迭代算法。然而,预计DUs与CUs之间将存在非平凡权衡。因此,此类网络下的频谱共享部署受到来自每个小区内DUs和CUs的小区间干扰的影响,从而导致了一个令人兴奋的优化问题。

然而,据作者所知,[4]‐[12]中并未讨论最优的子信道分配和功率分配。特别是,在叠加模式下,针对支持D2D的非正交多址接入蜂窝网络设计最优资源管理具有挑战性。此外,推导通过采用NOMA方案,设备用户和蜂窝用户的可实现速率区域引发了一个有趣的权衡问题,该问题在[4]‐[12]中尚未被研究。本文的贡献总结如下:与现有文献(例如,[4]‐[12],)相比,本文研究了基于非正交多址接入蜂窝用户的底层D2D网络中设备用户与蜂窝用户之间的性能权衡,以同时最大化设备用户和蜂窝用户的总数据速率。

为了研究这种权衡,我们通过联合优化发射功率和子载波分配策略,构建了一个多目标优化问题框架,该框架可通过可调节的加权参数来执行资源分配策略。

为了解决当前的多目标优化问题,我们首先采用加权切比雪夫方法,将多目标优化问题转化为单目标优化问题。然后,提出一种单调优化方法以获得最优的资源分配策略。

在数值结果中,我们给出了蜂窝用户和设备用户之间的一个有趣权衡,并证明了与多载波正交多址接入(MC‐OMA)方案相比,MC‐NOMA方案的优越性。这也表明,我们所提出的方案优于[12]中的所提出的算法。

II. 系统模型

在本文中,一种上行link single-cell NO考虑一个基于MA的蜂窝网络,该网络包含一个基站用于服务M个蜂窝用户和K条D2D链路(设备用户),分别由M={1,…, M}和K={1,…, K}表示。总系统带宽为B Hz,被划分为一组子信道,记为N={1,…, N},这些子信道在蜂窝用户和设备用户之间共享,每个子信道的带宽为Bc= B/N Hz。定义htn,r为发射机t与接收机r在子载波n上的信道增益。为简化起见,发射机与基站之间的信道增益定义为htn。记第k个设备用户到基站的瞬时信道功率增益为hnk,第m个蜂窝用户与基站之间的链路信道增益为gnm.。第k个设备用户在子信道n上的发射功率表示为pnk,第m个蜂窝用户的发射功率表示为ˆpnm。此外,噪声功率谱密度为N0。需要注意的是,由于D2D设备彼此距离较近,其通信基于OFDMA协议进行,这意味着期望信号远强于干扰项。在此网络中,基站可根据信道增益的降序采用SIC技术。用户与基站之间的信道增益应满足gm> hk> gi,则基站将依次使用SIC技术解码信号xm、xk和xi。相反,由于xm在D2D接收机xk处的信号强度最强,D2D接收机将直接解码其期望信号。该约束条件确保基站能够正确执行SIC。因此,每个蜂窝用户m在子信道n上的瞬时SINR由以下公式给出

$$
\gamma_{m, \text{Cellular}}^{n} = \frac{\psi_{m}^{n} \left| \hat{p} {m}^{n} \right| \left| g {m}^{n} \right|^{2}}{\sigma_{\text{CU}}^{2} + \sum_{\substack{i \in M \backslash m \ g_{i}^{n} < g_{m}^{n}}} \psi_{i}^{n} \hat{p} {i}^{n} \left| g {i}^{n} \right|^{2} + \sum_{\substack{j \in K \ h_{j}^{n} < g_{m}^{n}}} \phi_{j}^{n} p_{j}^{n} \left| h_{j}^{n} \right|^{2}},
(1)
$$

其中ψin和ϕnj分别为蜂窝用户(CU)和设备用户(DU)的子信道分配二进制变量。如果ψmn= 1,则将子信道n分配给第m个蜂窝用户且ψnm= 0,否则不分配。类似地,如果ϕnj= 1,则将子信道n分配给第j个设备用户且ϕnj= 0,否则不分配。在(1)中,项∑(i6=m)∈M, gin<gmn ψni ˆpni |gin |2表示基于NOMA方案在相同子信道上操作时来自蜂窝用户的干扰项,而项∑j∈K, hjn<gmnϕnj pnj |hjn |2表示来自设备用户的干扰。此外,第k个设备用户在子信道n上的瞬时接收SINR可表示为

$$
\gamma_{k}^{n,\text{D2D}} = \frac{\phi_{k}^{n} p_{k}^{n}}{\sigma_{\text{D2D}}^{2} + \sum_{m \in M} \psi_{m}^{n} \hat{p} {m}^{n} \left| g {m,k}^{n} \right|^{2} + \sum_{j \in K \backslash k} \phi_{j}^{n} p_{j}^{n} \left| h_{j,k}^{n} \right|^{2}}, (2)
$$

其中gmn,k表示第m个蜂窝用户与第k个D2D对接收端在子信道n上的信道功率增益,∑m∈M ψnmˆpnm|gmn,k|2表示来自蜂窝用户的干扰项。此外,∑j∈K\kϕnj pnj |hjn,k|2表示来自其他D2D对的干扰项,其中hjn,k表示第j个D2D对发射端到第k个D2D对接收端在子信道n上的瞬时信道功率增益。

III. 问题建模

在本节中ion,以strike a tradeoff b在设备用户和蜂窝用户的系统性能之间,我们构建了一个多目标优化问题,旨在联合最大化设备用户的总速率RDU和蜂窝用户的总速率RCU。所提出的多目标优化框架旨在获得功率分配以及子信道分配策略,以研究冲突的系统目标之间的性能权衡。该联合优化可通过以下多目标优化问题进行建模:

$$
\max_{{p,\hat{p},\phi,\psi}} R_{\text{DU}} = \sum_{k=1}^{K} R_{\text{DU},k} \quad (3a)
$$

$$
\max_{{p,\hat{p},\phi,\psi}} R_{\text{CU}} = \sum_{m=1}^{M} R_{\text{CU},m} \quad (3b)
$$

s.t.

$$
\sum_{n=1}^{N} \phi_{k}^{n} p_{k}^{n} \leq p_{k}^{\max,\text{D2D}}, \quad \sum_{n=1}^{N} \psi_{m}^{n} \hat{p} {m}^{n} \leq p {m}^{\max,\text{Cellular}}, \quad (3c)
$$

$$
\phi_{k}^{n} \in {0, 1}, \forall k, n, \quad \psi_{m}^{n} \in {0, 1}, \forall m, n, \quad (3d)
$$

$$
\sum_{n=1}^{N} \phi_{k}^{n} \leq 1, \forall k, \quad \sum_{n=1}^{N} \psi_{m}^{n} \leq 1, \forall m, \quad (3e)
$$

$$
\sum_{k=1}^{K} \phi_{k}^{n} + \sum_{m=1}^{M} \psi_{m}^{n} \leq L_{\max}, \forall n, \quad (3f)
$$

$$
R_{\text{CU},m} \geq R_{m}^{\min}, \quad R_{k}^{\text{DU},\min}, \forall k, \quad (3g)
$$

其中$R_{\text{CU}} k = \sum_{N}^{n=1} \ln(1+\gamma_{k}^{n,\text{D2D}})$, $m = \sum_{N}^{n=1} \ln(1+ \gamma_{m}^{n})$ 和R,ln(,)。为了便于系统设计,我们定义ϕ ∈ ZKN × 1 和ψ ∈ ZMN × 1 分别为D2D网络和蜂窝网络中的子信道分配变量向量。此外,变量p ∈ R KN × 1 和ˆp ∈ R MN × 1 分别为D2D网络和蜂窝网络中的功率分配变量集合。变量Pmax, D2D 和P max, Cellular 分别为设备用户和蜂窝用户的最大总功率。

Lmax表示在频谱共享方案1下,一个子信道上可配对的蜂窝用户最大数量。需要注意的是,由于速率函数中的干扰以及二元约束的存在,优化问题(3)是一个混合整数非线性规划(MINLP)。

IV. 提出的解决方案

解决多目标优化问题的一种方法是加权切比雪夫技术[15],[16], ,该方法为(3)提供了一个辅助优化变量χ

$$
\min_{{p,\hat{p},\phi,\psi,\chi}} \chi
$$

s.t.(3c)−(3g), (4a)

$$
\alpha R_{\text{DU},\max}(R_{\text{DU},\max} - R_{\text{DU}}) - \chi \leq 0, \quad (4b)
$$

$$
(1 - \alpha) R_{\text{CU},\max}(R_{\text{CU},\max} - R_{\text{CU}}) - \chi \leq 0, \quad (4c)
$$

其中α和1−α是权重系数2,用于表示不同目标的影响。加权切比雪夫方法可确保当RDU,max和RCU,max分别为各目标的最大值即理想目标点时,生成一组帕累托最优解[16]。

接下来,为了全局求解问题(4)中的高度非凸优化问题,我们采用一种称为单调优化方法的全局优化方法。通过利用目标函数及约束条件中的单调性或隐式单调性,该方法保证了收敛[17]。

注意,(4)不是标准形式的单调优化问题,因为(4b)和(4c)不是单调的。为了便于表述,我们将这些约束重写如下:

$$
\sum_{k=1}^{K} \sum_{n=1}^{N} \ln\left(1+ \frac{\bar{q} {n}^{k}}{\sigma {\text{D2D}}^{2} + \sum_{m \in M} \tilde{p} {m}^{n} \left| g {m,k}^{n} \right|^{2} + \sum_{j \in K \backslash k} \bar{q} {j}^{n} \left| h {j,k}^{n} \right|^{2}}\right) \geq R_{\text{DU},\max} - \frac{\chi}{\alpha}, \quad (5)
$$

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} \ln\left(1+ \frac{\tilde{p} {m}^{n} \left| g {m}^{n} \right|^{2}}{\sigma_{\text{CU}}^{2} + \sum_{\substack{i \in M \backslash m \ g_{i}^{n} < g_{m}^{n}}} \tilde{p} {i}^{n} \left| g {i}^{n} \right|^{2} + \sum_{\substack{j \in K \ h_{j}^{n} < g_{m}^{n}}} \bar{q} {j}^{n} \left| h {j}^{n} \right|^{2}}\right) \geq R_{\text{CU},\max} - \frac{\chi}{1 - \alpha}, \quad (6)
$$

其中$\tilde{p} {m}^{n} = \psi {m}^{n} \hat{p} {m}^{n}$ 和 $\bar{q} {k}^{n} = \phi_{k}^{n} p_{k}^{n}$。需要注意的是,由于约束(4b)和(4c),优化问题(4a)不是单调的。首先,可将(4a)中的优化问题重写为一个单调优化问题,然后我们采用多面体块算法[17]来获得全局最优解。为此,令$\tilde{p} {\text{Max}} = {p {k}^{\max,\text{D2D}}}, \forall k$和$\tilde{q} {\text{Max}} = {q {m}^{\max,\text{Cellular}}}, \forall m$表示每个用户在所有子信道上的最大发射功率。此外,可以看出,在同一子信道上最多有(Lmax − 1)个蜂窝用户共享。

非负权重α表示在媒体访问控制(MAC)层指定的资源分配策略中蜂窝用户和设备用户实现特定公平性概念的优先级,特别是针对信道条件较差的用户。

关系(5)、(6)和(3g)可以等价地表示为以下单个约束条件:

$$
\sum_{i=1}^{M} (c_{i}^{+}(\tilde{p})) - \sum_{i=1}^{M} (c_{i}^{-}(\tilde{p})) + \frac{R_{\text{DU},\max} - \chi R_{\text{DU},\max}}{\alpha} \geq 0, \quad (7)
$$

$$
\sum_{j=1}^{K} (c_{j}^{+}(\bar{q})) - \sum_{j=1}^{K} (c_{j}^{-}(\bar{q})) + \frac{R_{\text{CU},\max} - \chi R_{\text{CU},\max}}{1 - \alpha} \geq 0, \quad (8)
$$

$$
\min_{i \in {1,…,K}} \left[c_{k}^{+}(\tilde{p}) + \sum_{i \in K \backslash k} c_{i}^{-}(\tilde{p}) \right] - \sum_{i \in K} c_{i}^{-}(\tilde{p}) - R_{i}^{\text{DU},\min} \geq 0, \quad (9)
$$

$$
\min_{j \in {1,…,M}} \left[c_{m}^{+}(\bar{q}) + \sum_{j \in M \backslash m} c_{j}^{-}(\bar{q}) \right] - \sum_{j \in M} c_{j}^{-}(\bar{q}) - R_{j}^{\text{CU},\min} \geq 0, \quad (10)
$$

其中,$c_{i}^{+}(\tilde{p})$、$c_{i}^{-}(\tilde{p})$、$c_{j}^{+}(\bar{q})$和$c_{j}^{-}(\bar{q})$在下一页顶部给出的$\tilde{p}$和$\bar{q}$上是递增的。需要注意的是,方程(7)和(8)是两个递增函数之差。然而,约束(3d)是一个二元约束,难以处理。为了解决这一问题,我们将(3d)重写为等价形式如下:

$$
0 \leq \phi_{k}^{n} \leq 1, \quad \sum_{k=1}^{K} \sum_{n=1}^{N} \phi_{k}^{n} - (\phi_{k}^{n})^{2} \leq 0, \quad (14)
$$

$$
0 \leq \psi_{m}^{n} \leq 1, \quad \sum_{m=1}^{M} \sum_{n=1}^{N} \psi_{m}^{n} - (\psi_{m}^{n})^{2} \leq 0. \quad (15)
$$

可以看出,(14)和(15)的右边是非凸的且非单调的。为了解决这一问题,我们引入两个松弛变量ν和µ,并重写为:

$$
\sum_{k=1}^{K} \sum_{n=1}^{N} (\phi_{k}^{n})^{2} + \nu \geq R_1, \quad \sum_{k=1}^{K} \sum_{n=1}^{N} \phi_{k}^{n} + \nu \leq R_1, \quad (16)
$$

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} (\psi_{m}^{n})^{2} + \mu \geq R_2, \quad \sum_{m=1}^{M} \sum_{n=1}^{N} \psi_{m}^{n} + \mu \leq R_2, \quad (17)
$$

其中R1和R2为常数。我们注意到,(14)和(15)的左边分别关于ν和µ单调递增。因此,通过引入辅助变量s1、s2、s3和s4,问题(4)可以被

示意图0
示意图1
重新表述如下:

$$
\min_{{\tilde{p}, \bar{q}, s_1, s_2, s_3, s_4, \chi}} \chi \quad (18a)
$$

s.t.

$$
0 \leq s_1 \leq c^{-}(\tilde{p}_{\text{Max}}) - c^{-}(0), \quad (18b)
$$

$$
c^{-}(\tilde{p}) + s_1 \leq c^{-}(\tilde{p}_{\text{Max}}), \quad (18c)
$$

$$
c^{+}(\tilde{p}) + s_1 \geq c^{-}(\tilde{p}_{\text{Max}}), \quad (18d)
$$

$$
0 \leq s_2 \leq \hat{c}^{-}(\bar{q}_{\text{Max}}) - \hat{c}^{-}(0), \quad (18e)
$$

$$
\hat{c}^{-}(\bar{q}) + s_2 \leq \hat{c}^{-}(\bar{q}_{\text{Max}}), \quad (18f)
$$

$$
\hat{c}^{+}(\bar{q}) + s_2 \geq \hat{c}^{-}(\bar{q}_{\text{Max}}), \quad (18g)
$$

$$
\tilde{p} {m}^{n} \geq 0, \bar{q} {k}^{n} \geq 0, \forall m, k, n, \quad (18h)
$$

$$
\sum_{n=1}^{N} \bar{q} {k}^{n} \leq P {\text{max},\text{D2D}}, \quad \sum_{n=1}^{N} \tilde{p} {m}^{n} \leq P {\text{max},\text{Cellular}}, \quad (18i)
$$

$$
0 \leq \phi_{k}^{n} \leq 1, 0 \leq \psi_{m}^{n} \leq 1, \quad (18j)
$$

$$
\sum_{k=1}^{K} \sum_{n=1}^{N} (\phi_{k}^{n})^{2} + \nu \geq R_1, \quad \sum_{m=1}^{M} \sum_{n=1}^{N} (\psi_{m}^{n})^{2} + \mu \geq R_2, \quad (18k)
$$

$$
\sum_{k=1}^{K} \sum_{n=1}^{N} \phi_{k}^{n} + \nu \leq R_1, \quad \sum_{m=1}^{M} \sum_{n=1}^{N} \psi_{m}^{n} + \mu \leq R_2, \quad (18l)
$$

(3e)-(3f), (18m)

$$
0 \leq s_3 \leq r^{-}(\tilde{p}_{\text{Max}}) - r^{-}(0), \quad (18n)
$$

$$
r^{-}(\tilde{p}) + s_3 \leq r^{-}(\tilde{p}_{\text{Max}}), \quad (18o)
$$

$$
r^{+}(\tilde{p}) + s_3 \geq r^{-}(\tilde{p}_{\text{Max}}), \quad (18p)
$$

$$
0 \leq s_4 \leq \hat{r}^{-}(\bar{q}_{\text{Max}}) - \hat{r}^{-}(0), \quad (18q)
$$

$$
\hat{r}^{-}(\bar{q}) + s_4 \leq \hat{r}^{-}(\bar{q}_{\text{Max}}), \quad (18r)
$$

$$
\hat{r}^{+}(\bar{q}) + s_4 \geq \hat{r}^{-}(\bar{q}_{\text{Max}}). \quad (18s)
$$

因此,问题(18)的可行集可以表示为以下两个集合的交集:

$$
G = \left{ {\tilde{p}, \bar{q}, s_1, s_2, s_3, s_4, \chi} : \tilde{p} \preceq \tilde{p} {\text{Max}}, \bar{q} \preceq \bar{q} {\text{Max}}, (18c), (18f), (18i), (18j), (18l), (18m), (18o), (18r) \right}, \quad (19)
$$

$$
H = \left{ {\tilde{p}, \bar{q}, s_1, s_2, s_3, s_4, \chi} : \tilde{p} \succeq 0, \bar{q} \succeq 0, (18d), (18g), (18h), (18k), (18p), (18s) \right}, \quad (20)
$$

其中 $G$ 和 $H$ 分别为正规集和共正规集,在超矩形[17]中

$$
[0, c^{-}(\tilde{p} {\text{Max}}) - c^{-}(0)] \times [0, \hat{c}^{-}(\bar{q} {\text{Max}}) - \hat{c}^{-}(0)] \times [0, \tilde{p} {\text{Max}}] \times [0, \bar{q} {\text{Max}}] \times [0, c_i^{-}(\tilde{p} {\text{Max}},k) - c_i^{-}(0)]
\times [0, \hat{c}_j^{-}(\bar{q}
{\text{Max}},m) - \hat{c} j^{-}(0)] \times [0, \tilde{p} {\text{Max}},k] \times [0, \bar{q}_{\text{Max}},m]. \quad (21)
$$

最后,可以证明问题(18)是一个单调问题。因此,通过应用多面体块算法,可以在可行集的上边界处找到最优解。

然而,由于上边界并不精确已知,无法直接逼近。因此,我们采用外部多面体块逼近来构造一个多面体块。接下来,可以通过从旧的多面体块切割一个锥体来构造一个新的多面体块Ω(l+1),即Ω(l),新的多面体块为Ω(l)\K+x,其中该锥体的定义如下所述。

定义1 假设 $G$ 是 $R^n_+$ 中的一个正常集合,且 $y \in R^n_+ \backslash G$。如果存在 $\hat{x} \in \partial_+ G$,使得 $\hat{x} < y$,其中 $\partial_+ G$ 是 $G$ 的上边界,则锥体 $K_{\hat{x}}^+ := { x \in R^n_+ \mid x > \hat{x} }$ 将 $y$ 严格地与 $G$ 分离。

让我们定义多面体块Ω的顶点集为 $\omega$,则 $w^{(*)} = { z \in w \mid z > x }$ 是包含锥体

$$
K_{\hat{x}}^+, \quad z^{(i)} = z + (x^{(i)} - z^{(i)}) e_i \quad \forall i \in {1,…, n}
$$

中所有顶点的Ω的子集。可采用以下方程来获得每个顶点 $z \in \Omega^{ }$。注意,$z^{(i)}$ 是通过将 $z$ 的第 $i$ 个元素替换为 $x$ 的第 $i$ 个元素得到的。此外,$e_i$ 是一个各元素均为1的单位向量。令 $\pi(l)$ 表示 Ω(l) 中的一个顶点,使其在 Ω(l) 上最大化目标函数。投影操作由 $\varphi(\pi(l))$ 给出,其需要求解一个一维问题,即 $\max { \lambda > 0 \mid \lambda \pi(l) \in G }$。由于 $G$ 的正规性,可通过算法1所示的二分搜索算法获得 $\lambda$。令 $\hat{x}(l)$ 表示第 $l$ 次迭代时的最可信的可行解,$V(l) = f(\hat{x}(l))$ 为当前最合适值。在下一次迭代($l+1$)中,如果 $\varphi(\pi^{l+1}) \in G \cap H$ 且 $f(\varphi(\pi^{l+1})) \geq V(l)$ 成立,则有 $\hat{x}^{l+1} = \varphi(\pi^{l+1})$ 和 $V^{l+1} = f(\varphi(\pi^{l+1}))$;否则,令 $\hat{x}^{l+1} = \hat{x}^l$ 且 $V^{l+1} = V^l$。当 $| f(\pi(l)) - V(l) | \leq \varepsilon$ 满足时,算法停止,其中 $\varepsilon \geq 0$ 为给定的容差。此外,若 $f(x^ ) - \varepsilon \leq f(\hat{x}^{l+1}) \leq f(x^*)$ 成立,则称 $\hat{x}^l$ 为一个 $\varepsilon$-最优解。我们在算法2中总结了该多面体块方法。考虑到需要计算 $\pi(l)$ 在第 $l$ 次迭代中关于集合 $G$ 的投影,因此可通过 $\varphi(\pi(l)) = \lambda \pi(l)$ 获得该投影。

算法1 二分投影搜索算法

输入:$\pi(l)$ 和 $G$
输出:$\lambda$ 使得 $\lambda = \arg\max { \lambda > 0 \mid \lambda \pi(l) \in G }$

1: 设置 $\lambda_{\min} = 0$、$\lambda_{\max} = 1$ 和误差容限 $\delta \ll 1$。
2: 重复
3: 令 $\bar{\lambda} = \frac{\lambda_{\min} + \lambda_{\max}}{2}$
4: 求解可行性问题(22)。
5: 如果 $\bar{\lambda}$ 是否可行, 即 $\bar{\lambda} \pi(l) \in G$,然后设置 $\lambda_{\min} = \bar{\lambda}$
7: 否则
8: 设置 $\lambda_{\max} = \bar{\lambda}$
9: 直到 $\lambda_{\max} - \lambda_{\min} < \delta$.
10: 返回 $\lambda = \lambda_{\min}$。

其中 $\lambda$ 是投影参数。此外,$\lambda$ 由 $\lambda = \max { \alpha \mid \alpha \pi(l) \in G }$ 给出,其中 $\lambda \in [0, 1]$。特别地,可以采用二分搜索技术来获得 $\lambda$。对于给定的 $\lambda$ 和第 $l$ 次迭代中的顶点 $\pi(l)$,需要求解以下可行性问题:

$$
\max y_1 \quad (22a)
$$

s.t. $y \in G$. (22b)

我们可以通过将功率分配($\tilde{p}$,$\tilde{q}$)各项的值与零进行比较,来获得子载波分配($\phi_{k}^{n}, \psi_{m}^{n}$)的最优值。如果($\tilde{p}$,$\tilde{q}$)的值大于0,则意味着对应的子载波分配($\phi_{k}^{n}, \psi_{m}^{n}$)将为零。投影二分搜索算法的详细内容见算法2。

V. 计算复杂度

多面体 block algorithm is influenced by the configuration of the objective function and the constraints constituting the normalized set. 首先,通过顶点在归一化集合上的投影确定最合适的顶点。然后,获得所选顶点的投影。最终,通过剔除不合适的顶点得到新的顶点集合。特别地,假设问题(P1)的维度、收敛所需的迭代次数以及每个顶点投影预期的迭代次数分别为 $B_1$、$B_2$ 和 $B_3$。总之,复杂度阶数可表示为 $O(B_2(B_2 \times B_1 + B_3))$ [17],[18]。

VI. 仿真结果

在本节中,我们通过数值仿真评估所提出算法的性能。对于每个子信道,考虑了包含路径损耗模型的瑞利平坦衰落。仿真参数如表I所示,除非另有说明。

参数
小区直径 250米
D2D链路间距 30m
蜂窝用户数量 $(M)$ 6
设备用户数量 $(K)$ 3
子载波数量 $(N)$ 4
噪声功率 −120 dBm
子载波带宽 180 千赫
蜂窝链路的路径损耗模型 128.1+ 37.6log(d)
设备到设备链路的路径损耗模型 148.1+ 40log(d)
分布式单元的最大发射功率 25 分贝毫瓦
最低数据速率要求(Rmin) 1 bps/Hz

图1显示了在蜂窝用户和设备用户权重相等(即 $\alpha = 0.5$)的情况下,系统总速率随蜂窝用户最大发射功率的变化情况。可以看出,通过增加 $p_{\text{max},\text{Cellular}}$,不仅蜂窝用户更容易满足其最低需求,而且系统吞吐量也得到提升。实际上,随着 $p_{\text{max},\text{Cellular}}$ 的增加,由于蜂窝用户的可实现速率提高,系统吞吐量随之单调增加,从而提升了系统的总吞吐量。该图还表明,较大的 $p_{\text{max}, \text{Cellular}}$ 会导致释放设备用户的潜力,使更多D2D对能够接入网络。为了进行比较,我们还考虑了三种用于系统总速率的基线方案。

在基线方案1中,我们采用随机子载波分配,而功率分配则基于所提出的单调优化方法获得。在基线方案2中,我们考虑使用MC-OMA,其中每个子载波最多分配给一个用户。在基线方案3中,我们考虑了[12]中提出的方法,该方法采用迭代算法来寻找资源分配策略。可以看出,由于采用了单调优化方法,从而获得了最优的资源分配策略,因此我们所提出的算法优于[12]中的所提出的算法。此外,我们观察到,由于正交子载波分配的利用不足,MC-OMA的系统总速率相比MC-NOMA更低。

图2展示了总速率随D2D对数量的变化情况。可以看出,与基线方案3相比,我们所提出的算法显著提高了系统总速率。这是因为在所提出的算法中,频谱资源得到了更充分的复用,并且所提出的算法结合SIC方案优于基线方案3。

图3中研究了DUs和CUs的总数据速率之间的权衡。该图是通过以0.1为步长、针对不同 $\alpha \in [0, 1]$ 值求解问题(18)得到的。可以看出,DUs和CUs的总数据速率之间存在非平凡权衡。具体而言,DUs的总数据速率是相对于CUs的总数据速率的递减函数。换句话说,由于相互竞争的目标函数,最大化DUs的总数据速率会导致CUs的总数据速率下降。实际上,通过改变权重因子,我们可以在蜂窝用户和DUs之间实现公平性。该图还展示了NOMA方案相较于传统OMA方法的优越性。

示意图2

七、结论

本文研究了上行链路叠加在蜂窝用户使能的NOMA网络中DUs与CUs之间的权衡。我们构建了一个多目标优化框架(MOOP框架),旨在同时联合最大化DUs和CUs的吞吐量,以获得功率分配策略和子信道分配方案。利用加权切比雪夫方法将多目标优化问题(MOOP)转化为单目标优化问题(SOOP),然后通过单调优化求解以获得最优解。仿真结果不仅揭示了所研究的相互竞争的目标函数之间有趣的权衡关系,还验证了所提方案相较于多载波正交多址接入(MC-OMA)的优越性。

内容概要:本文是一份关于“Soldiers”问题的算法设计分析实践报告,研究如何将分布在网格点上的n个士兵重排成一条水平队列,使得总体移动步数最少。解决方案基于中位数性质,分别处理x和y方向的最优位置:y坐标取所有士兵y坐标的中位数,x坐标通过预调整(原始x坐标减去对应索引)后再取中位数来确定最佳起始位置。算法时间复杂度为O(n logn),主要开销来自三次排序操作;空间复杂度为O(n),用于存储坐标数据。实验验证了算法在样例输入下的正确性,得出最小移动步数为8,符合预期输出。报告还指出了实现过程中常见的索引处理错误及偶数情况下中位数选择的一致性问题,并建议加强极端情况的测试覆盖。; 适合人群:具备一定算法基础、正在学习算法设计分析的计算机相关专业学生或初级开发者,尤其是对中位数优化、贪心策略和排序应用感兴趣的人员。; 使用场景及目标:①掌握利用中位数求解曼哈顿距离最小和的经典方法;②理解如何将二维问题分解为两个独立的一维问题进行优化;③学习排序索引变换在实际算法中的巧妙应用;④提升对边界条件和代码细节的调试能力。; 阅读建议:此资源侧重于算法思想的理解实现细节的剖析,建议读者结合代码逐步调试,重点关注x坐标调整重新排序的过程,同时自行构造多种测试用例(包括边界和极端情况)以加深理解。
内容概要:本文介绍了基于Simulink的光伏阵列常见故障仿真模型,旨在通过建模仿真手段研究光伏系统在不同故障条件下的运行特性。文中详细构建了光伏阵列在局部遮蔽、组件老化、旁路二极管失效等典型故障情况下的仿真模型,利用Simulink平台实现动态响应分析,帮助理解故障对输出功率、电流电压特性的影响,并为光伏系统的故障诊断、运维优化和可靠性提升提供技术支持。同时文档还列举了多个电力系统相关仿真案例,涵盖电力系统N-k故障、短期负荷预测、无功优化、储能配置、无人机路径规划等多个方向,展示了MATLAB/Simulink在新能源智能系统仿真中的广泛应用。; 适合人群:具备一定电力电子、新能源或自动化背景的高校研究生、科研人员及工程技术人员;熟悉MATLAB/Simulink基本操作的学习者;从事光伏系统设计、故障诊断或智能优化研究的相关从业者; 使用场景及目标:①用于光伏系光伏阵列常见故障仿真模型(Simaulink仿真实现)统故障机理分析诊断算法开发;②支撑科研项目中的仿真验证环节;③辅助教学实验课程设计,提升对光伏系统动态行为的理解;④为后续智能诊断模型(如神经网络、深度学习)提供数据支持; 阅读建议:建议结合提供的网盘资源下载完整代码模型文件,边学习边实践,重点掌握Simulink建模流程故障设置方法,同时可拓展学习文中提及的BP神经网络、粒子群优化、YALMIP工具箱等关联技术,以实现更复杂的系统集成优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值