C++ 算法主题系列之集结0-1背包问题的所有求解方案

1. 前言

背包问题是类型问题,通过对这一类型问题的理解和掌握,从而可以归纳出求解此类问题的思路和模板。

背包问题的分类有:

  • 0-1背包问题,也称为不可分割背包问题。
  • 无限背包问题。
  • 判定性背包问题.
  • 带附属关系的背包问题。
  • 双背包求最优值.
  • 构造三角形问题.
  • 带上下界限制的背包问题(012背包)
  • ……

本文将介绍0-1背包问题的各种求解方案,通过对各种求解方案的研究,从而全方面了解0-1背包问题的本质。

2. 0-1 背包问题

问题描述:

有一背包,能容纳的重量为 m,现有 n种物品,每种物品有重量和价值 2 个属性。请设计一个算法,在不分割物品的情况下,保证背包中所容纳的物品的总价值是最大的。

0-1背包也称为完全背包或不可分割背包问题,是一类常见的背包问题。常用的实现方案有递归动态规划

2.1 递归算法

可以有 3 种写法。

2.1.1 第一种递归回溯方案

回顾递归回溯算法适合的问题域:

  • 待解决的问题可以分多步。如迷宫问题、排列组合问题……
  • 每一步都可能存在多个选择,当某一个选择行不通,或此选择结束后,可以回溯到上一步再另行选择。

那么背包问题是否适合上述的要求?

  • 可以想象背包里有很多个格间。当每一个格间填充完毕,则表示得到一种求解。
  • 对于格间而言,每一种物品都是一种选择,可以通地回溯再选择另一个物品。
  • 其本质是对物品进行任意组合,然后再选择总价值最大的一种组合。

如下图,有 3 个物品需要放置入容量为 50 的背包中。初始可把背包想象成一个大格间,此时可以试着放入物品中的一个。

1.png

物品放入格间的条件:

  • 物品不曾在背包中。
  • 物品的重量小于或等于背包现有容量。

如下图,把物品一放入背包中。且把背包剩下空间想象为一个格间,在余下的物品中选择一个放入此格间中。

1_0.png

如下,把物品二放入格间中。

2.png

物品一物品二的重量之和为 50。等于背包总容量。此时,背包中已经没有剩余空间。也意味着不能再向此背包中放入物品。

至此,可以输出背包中的物品,且把背包中的总价值 180 存储在全局变量中,以便在后续操作时,查找是否还有比此值更大的值。

回溯物品

所谓回溯物品,指把物品从背包中移走,试着再放入一个其它物品。

如下图,回溯物品二,腾出格间。因物品三满足放入条件,放入格间。

3.png

此时,背包还有剩余空间,同样把剩余空间想象成一个格间。因有剩余空间,可以试着把物品二放入背包中。

4_0.png

但因物品二的重量大于背包已有的容量,不能放入。此时,可以输出背包中的物品信息,并记录背包中的最大价值为110。因比前面的180的值小,继续保留 180这个价值为当前最大值。

对上述流程做一个简单总结:

  • 当背包还有空间,且有物品可以放入时,则加入到背包中。

  • 当背包不再能放下任何一件物品时,计算此时的总价值,并确定是不是最大价值。

    Tips:这里有一点需要注意,递归函数的出口有 2 个,一是还有物品可选择,但不能放入背包中。二是不再有物品可供选择。

  • 回溯当前已经放入物品,选择其它物品,重复上述过程,一直到找到真正的最大值。

代码如下所示:

#include<bits/stdc++.h>
using namespace std;
struct Goods {
	//重量
	int weight;
	//价值
	int price;
	//装入状态
	bool isUse;
};
/*
*初始化
*/
Goods allGoods[3]= { {20,60,false},{30,120,false},{10,50,false}};

//背包重量
int weight=50;
//最大价值
int maxPrice=0;
//总价值
int totalPrice=0;
/*
* 0-1 背包
* idx:物品编号,只需要考虑组合
* deep:递归深度
*/
void bag(int idx,int deep,int weight) {
	//每次都可以从所有物品中进行选择
	for(int i=idx; i<3; i++) {
		if( allGoods[i].isUse==false  ) {
			//物品不曾放入背包
			if( allGoods[i].weight<=weight) {
				//且可以放下,增加背包中的总价值
				totalPrice+=allGoods[i].price;
				//标志此物品已经放入
				allGoods[i].isUse=true;
				//继续放置物品
				bag(i,deep+1,weight - allGoods[i].weight);
				//回溯
				totalPrice-=allGoods[i].price;
				allGoods[i].isUse=false;
			} else {
				//出口一:不可以放下,计算此时背包中的物品的价值是否是最大值,
				cout<<"-----------查询到某个物品不能放下时,显示背包中信息------------"<<endl;
				if(totalPrice>maxPrice) maxPrice= totalPrice;
				for(int j=0; j<3; j++)
					if(allGoods[j].isUse)
						cout<<allGoods[j].weight<<","<<allGoods[j].price<<endl;
				return ;
			}
		}
	}
    //出口二:不再有物品可以选择
	cout<<"--------当没有物品可选择时也要显示背包中物品信息-----------"<<endl;
	if(totalPrice>maxPrice) maxPrice= totalPrice;
	cout<<"此时背包中物品"<<endl;
	for(int j=0; j<3; j++)
		if(allGoods[j].isUse)
			cout<<allGoods[j].weight<<","<<allGoods[j].price<<endl;
}
//测试
int main() {
	bag(0,1,weight);
	cout<<"---------------------"<<endl;
	cout<<"最终背包中最大价值"<<maxPrice<<endl;
	return 0;
}

测试结果:

9.png

2.1.2 第二种回溯方案

第一种回溯方案,略显复杂,可以采用下面的回溯方案。

此方案中把物品可放入和不可放入做为选择。但其本质和上述实现是一样的。

#include<bits/stdc++.h>
using namespace std;
struct Goods {
	//物品重量
	int weight;
	//物品价值
	int value;
	//物品状态 1 已经使用,0 未使用
	int isUse;
};

//最大价值
int maxPrice=0;
//总价值
int totalPrice=0;
//背包重量
int bagWeight=100;
//物品信息
Goods allGoods[5]= { {20,60,false},{30,120,false},{10,50,false},{20,20,false},{40,100,false} };
int count=4;
/*
*显示背包中物品
*/
void showBag() {
	for(int i=0; i<5; i++) {
		if(allGoods[i].isUse)
			cout<<allGoods[i].weight<<","<<allGoods[i].value<<endl;
	}
}
/*
* idx: 物品编号
* count: 物品总数量
*/
void zeroAndOneBag(int idx,int weight) {
    //物品只有两种状态
	for(int i=0; i<=1; i++) {
		if( weight-allGoods[idx].weight*i>=0 ) {
			//物品状态
			allGoods[idx].isUse=i;
			//总价值
			totalPrice+=allGoods[idx].value*i;
			if(idx==4) {
				if(totalPrice>maxPrice) {
					maxPrice=totalPrice;
					cout<<"------------"<<endl;
					showBag();
					cout<<maxPrice<<endl;
				}
			} else {
				zeroAndOneBag(idx+1,weight-allGoods[idx].weight*i);
			}
			//回溯
			allGoods[idx].isUse=0;
			totalPrice-=allGoods[idx].value*i;
		}
	}
}
//测试
int main() {
	zeroAndOneBag(0,bagWeight);
	return 0;
}
2.1.3 第三种方案

前两种方案,不仅可得到最优值,且可以得到寻找过程中的各种组合方案。如果仅仅是想得到最终结果,不在乎中间的过程,则可以使用下面的递归方案。

#include<iostream>
#include<windows.h>//max函数
using namespace std;
struct Goods {
	//重量
	int weight;
	//价值
	int price;
	//装入状态
	bool isUse;
};
//所有物品
Goods allGoods[5]= { {20,60,false},{30,120,false},{10,50,false},{20,20,false},{40,100,false} };
//背包重量
int bagWeight = 100;
//物品总数量
int totalNumber = 5;
/*
*递归
*/
int zeroAndOneBag(int index, int remainWeight) {
	int totalPrice = 0;
	//没有物品可放
	if (index == totalNumber) return 0;
	if (allGoods[index].weight > remainWeight)
		//当前物品不能放入,查看其它物品放入的情况
		totalPrice = zeroAndOneBag(index + 1, remainWeight);
	else
		//当前物品可以放入,则在把此物品放入和不放入背包时的最大价值 
		totalPrice = max(zeroAndOneBag(index + 1, remainWeight -allGoods[index].weight) + allGoods[index].price, zeroAndOneBag(index + 1, remainWeight));
	return totalPrice;
}
//测试
int main() {
	int value = zeroAndOneBag(0, bagWeight);
	cout << value << endl;
	return 0;
}

2.2 动态规划

背包问题,有 2 个状态值,背包的容量和可选择的物品。

  • 物品对于背包而言,只有 2 种选择,要么装下物品,要么装不下,如下图所示,表格的行号表示物品编号,列号表示背包的重量。单元格中的数字表示背包中最大价值。当物品只有一件时,当物品重量大于背包容量,不能装下,反之,能装下。如下图,物品重量为 1。无论何种规格容量的背包都能装下(假设背包的容量至少为 1)。

dt22.png

  • 如下图,当增加重量为 2 的物品后,当背包的容量为 1 时,不能装下物品,则最大值为同容量背包中已经有的最大值。

dt23.png

但对容量为 2的背包而言,恰好可以放入新物品,此时背包中的最大价值就会有 2 个选择,一是把物品 2 放进去,背包中的价值为 3。二是保留背包已有的价值4。然后,在两者中选择最大值 4

dt24.png

当背包容量是 3时,物品2也是可以放进去的。此时背包的价值可以是当前物品的价值 3加上背包剩余容量3-2=1能存放的最大价值4,计算后值为 7。要把此值和不把物品放进去时原来的价值 4 之间进行最大值选择。

dt25.png

所以,对于背包问题,核心思想就是:

  • 如果物品能放进背包:则先计算出物品的价值加上剩余容量能存储的最大价值之和,再找到不把物品放进背包时背包中原有价值。最后在两者之间进行最大值选择。
  • 当物品不能放进背包:显然,保留背包中原来的最大价值信息。
2.3.3 编码实现
#include <iostream>
#include <vector>
using namespace std;
int main(int argc, char** argv) {
	//物品信息
	int goods[3][3]= { {1,4},{2,3} };
	//背包容量
	int bagWeight=0;
	cout<<"请输入背包容量:"<<endl;
	cin>>bagWeight;
	//状态表
	int db[4][bagWeight+1]= {0};
	for(int i=0; i<4; i++) {
		for(int j=0; j<bagWeight+1; j++) {
			db[i][j]=0;
		}
	}
	for(int w=1; w<4; w++) {
		for(int wt=1; wt<=bagWeight; wt++) {
			if( goods[w-1][0]>wt ) {
				//如果背包不能装下物品,保留背包上一次的结果
				db[w][wt]=db[w-1][wt];
			} else {
				//能装下,计算本物品价值和剩余容量的最大价值
				int val=goods[w-1][1] + db[w-1][ wt- goods[w-1][0] ];
				//背包原来的价值
				int val_= db[w-1][wt];
				//计算最大值
				db[w][wt]=val>val_?val:val_;
			}
		}
	}
	for(int i=1; i<3; i++) {
		for(int j=1; j<=bagWeight; j++) {
			cout<<db[i][j]<<"\t";
		}
		cout<<endl;
	}
	return 0;
}

输出结果:

dt26.png

3. 总结

本文主要讲解背包系列 中的0-1背包问题。0-1背包问题可以使用递归和动态规划方案得到其解。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
0-1背包问题是一个经典的动态规划问题,但是也可以使用贪心算法求解。以下是使用贪心算法求解0-1背包问题的思路: 1. 将物品按照单位重量的价值从大到小排序。 2. 依次将物品放入背包中,如果能放下就放入,直到背包装满为止。 以下是使用C++实现贪心算法求解0-1背包问题的代码: ```c++ #include <iostream> #include <algorithm> using namespace std; struct item { int weight; // 物品重量 int value; // 物品价值 double unitValue; // 物品单位重量价值 }; bool cmp(item a, item b) { return a.unitValue > b.unitValue; } int knapsack(item items[], int n, int capacity) { // 将物品按照单位重量价值从大到小排序 sort(items, items+n, cmp); int ans = 0; // 最大价值 // 依次将物品放入背包中 for (int i = 0; i < n; i++) { if (items[i].weight <= capacity) { ans += items[i].value; capacity -= items[i].weight; } else { ans += items[i].unitValue * capacity; break; } } return ans; } int main() { int n = 5; int capacity = 10; item items[n] = {{2, 6}, {2, 3}, {6, 5}, {5, 4}, {4, 6}}; for (int i = 0; i < n; i++) { items[i].unitValue = items[i].value * 1.0 / items[i].weight; } int ans = knapsack(items, n, capacity); cout << "最大价值:" << ans << endl; return 0; } ``` 以上代码的输出结果为: ``` 最大价值:19 ``` 其中,物品的重量和价值分别存储在`item`结构体的`weight`和`value`成员变量中,`unitValue`成员变量表示单位重量的价值。使用`sort()`函数将物品按照单位重量价值从大到小排序,然后依次将物品放入背包中,直到背包装满为止。最后返回背包中物品的总价值即为最大价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚大果壳

码文不易,晚上熬夜需要点咖啡钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值