1335. Minimum Difficulty of a Job Schedule

给定一个整数数组 jobDifficulty 和一个整数 d,表示有 d 天要完成 jobDifficulty 数组中的工作。每天至少要完成一项工作。每天的难度是当天完成的工作中难度最大的那个。目标是找到工作安排的最小难度。如果无法安排所有工作,则返回 -1。问题可以通过动态规划解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Source: https://leetcode.com/contest/weekly-contest-173/problems/minimum-difficulty-of-a-job-schedule/

You want to schedule a list of jobs in d days. Jobs are dependent (i.e To work on the i-th job, you have to finish all the jobs j where 0 <= j < i).

You have to finish at least one task every day. The difficulty of a job schedule is the sum of difficulties of each day of the d days. The difficulty of a day is the maximum difficulty of a job done in that day.

Given an array of integers jobDifficulty and an integer d. The difficulty of the i-th job is jobDifficulty[i].

Return the minimum difficulty of a job schedule. If you cannot find a schedule for the jobs return -1.

Example 1:
在这里插入图片描述
Input: jobDifficulty = [6,5,4,3,2,1], d = 2
Output: 7
Explanation: First day you can finish the first 5 jobs, total difficulty = 6.
Second day you can finish the last job, total difficulty = 1.
The difficulty of the schedule = 6 + 1 = 7
Example 2:

Input: jobDifficulty = [9,9,9], d = 4
Output: -1
Explanation: If you finish a job per day you will still have a free day. you cannot find a schedule for the given jobs.
Example 3:

Input: jobDifficulty = [1,1,1], d = 3
Output: 3
Explanation: The schedule is one job per day. total difficulty will be 3.
Example 4:

Input: jobDifficulty = [7,1,7,1,7,1], d = 3
Output: 15
Example 5:

Input: jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
Output: 843

Constraints:

1 <= jobDifficulty.length <= 300
0 <= jobDifficulty[i] <= 1000
1 <= d <= 10

思路:DP

d p [ i ] [ j ] dp[i][j] dp[i][j]表示 j j j天安排 [ 0... i ] [0...i] [0...i]的jobs,最小的difficulty。需要满足 i + 1 ≥ j i+1\geq j i+1j.

j ≥ 2 j\geq 2 j2 i ≥ j − 1 i\geq j-1 ij1时,
d p [ i ] [ j ] = min ⁡ j − 2 ≤ k < i ( max ⁡ ( j o b D i f f i c u l t y [ k + 1... i ] ) + d p [ k ] [ j − 1 ] ) dp[i][j]=\min\limits_{j-2\leq k<i} (\max(jobDifficulty[k+1...i])+dp[k][j-1]) dp[i][j]=j2k<imin(max(jobDifficulty[k+1...i])+dp[k][j1])
所以循环是 1 ≤ i < n 1\leq i< n 1i<n, 2 ≤ j ≤ min ⁡ ( i + 1 , d ) 2\leq j\leq \min(i+1,d) 2jmin(i+1,d).

对于 j = = 1 j==1 j==1时的所有 0 ≤ i < n 0\leq i< n 0i<n,就是取数组 [ 0... i ] [0...i] [0...i]最大值即可。

class Solution {
public:
    int minDifficulty(vector<int>& jobDifficulty, int d) {
        int n=jobDifficulty.size();
        int INF=0x3f3f3f3f;
        vector<vector<int> > dp(n, vector<int>(d+1, INF));
        int maxdif=jobDifficulty[0];
        for(int i=0;i<n;i++){
            maxdif=max(maxdif,jobDifficulty[i]);
            dp[i][1]=maxdif;
        }
        for(int i=1;i<n;i++){
            for(int j=2;j<=i+1&&j<=d;j++){
                int maxdiff=jobDifficulty[i];
                for(int k=i-1;k>=j-2;k--){
                    maxdiff=max(jobDifficulty[k+1],maxdiff);
                    dp[i][j]=min(dp[i][j],maxdiff+dp[k][j-1]);
                }
            }
        }
        if(dp[n-1][d]==INF){
            dp[n-1][d]=-1;
        }
        return dp[n-1][d];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值