【Leetcode】1335. Minimum Difficulty of a Job Schedule

题目地址:

https://leetcode.com/problems/minimum-difficulty-of-a-job-schedule/

给定一个长 n n n正整数数组 A A A和一个正整数 d d d,要求将 A A A分为 d d d个非空子数组,使得每个子数组的最大值加起来最小。返回那个最小和。如果不存在切割方案,则返回 − 1 -1 1

可以用动态规划。首先,如果 n < d n<d n<d,那么不存在切割方案,则返回 − 1 -1 1。设 f [ k ] [ i ] f[k][i] f[k][i] A [ i : n − 1 ] A[i:n-1] A[i:n1]被切成 k k k个非空子数组的情况下,子数组最大值的最小和是多少。那么 f [ 1 ] [ i ] = max ⁡ A [ i : n − 1 ] f[1][i]=\max A[i:n-1] f[1][i]=maxA[i:n1],并且 f [ k ] [ i ] = min ⁡ i ≤ j ≤ n − k { max ⁡ A [ i : j ] + f [ k − 1 ] [ j + 1 ] } f[k][i]=\min_{i\le j\le n-k}\{\max A[i:j]+f[k-1][j+1]\} f[k][i]=ijnkmin{maxA[i:j]+f[k1][j+1]}这里 n − k ≥ j n-k\ge j nkj的原因是, A [ j + 1 : n − 1 ] A[j+1:n-1] A[j+1:n1]必须长度大于等于 k − 1 k-1 k1才够切出 k − 1 k-1 k1个子数组。代码如下:

class Solution {
 public:
  int minDifficulty(vector<int>& a, int d) {
    int n = a.size();
    if (n < d) return -1;
    int f[d + 1][n];
    memset(f, 0x3f, sizeof f);
    for (int i = n - 1, cur_max = 0; i >= 0; i--) {
      cur_max = max(cur_max, a[i]);
      f[1][i] = cur_max;
    }

    for (int i = 2; i <= d; i++)
      for (int j = 0; j <= n - i; j++) {
        int cur_max = 0;
        for (int k = j; k <= n - i; k++) {
          cur_max = max(cur_max, a[k]);
          f[i][j] = min(f[i][j], cur_max + f[i - 1][k + 1]);
        }
      }

    return f[d][0];
  }
};

时间复杂度 O ( d n 2 ) O(dn^2) O(dn2),空间 O ( d n ) O(dn) O(dn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值