题目地址:
https://leetcode.com/problems/minimum-difficulty-of-a-job-schedule/
给定一个长 n n n正整数数组 A A A和一个正整数 d d d,要求将 A A A分为 d d d个非空子数组,使得每个子数组的最大值加起来最小。返回那个最小和。如果不存在切割方案,则返回 − 1 -1 −1。
可以用动态规划。首先,如果 n < d n<d n<d,那么不存在切割方案,则返回 − 1 -1 −1。设 f [ k ] [ i ] f[k][i] f[k][i]是 A [ i : n − 1 ] A[i:n-1] A[i:n−1]被切成 k k k个非空子数组的情况下,子数组最大值的最小和是多少。那么 f [ 1 ] [ i ] = max A [ i : n − 1 ] f[1][i]=\max A[i:n-1] f[1][i]=maxA[i:n−1],并且 f [ k ] [ i ] = min i ≤ j ≤ n − k { max A [ i : j ] + f [ k − 1 ] [ j + 1 ] } f[k][i]=\min_{i\le j\le n-k}\{\max A[i:j]+f[k-1][j+1]\} f[k][i]=i≤j≤n−kmin{maxA[i:j]+f[k−1][j+1]}这里 n − k ≥ j n-k\ge j n−k≥j的原因是, A [ j + 1 : n − 1 ] A[j+1:n-1] A[j+1:n−1]必须长度大于等于 k − 1 k-1 k−1才够切出 k − 1 k-1 k−1个子数组。代码如下:
class Solution {
public:
int minDifficulty(vector<int>& a, int d) {
int n = a.size();
if (n < d) return -1;
int f[d + 1][n];
memset(f, 0x3f, sizeof f);
for (int i = n - 1, cur_max = 0; i >= 0; i--) {
cur_max = max(cur_max, a[i]);
f[1][i] = cur_max;
}
for (int i = 2; i <= d; i++)
for (int j = 0; j <= n - i; j++) {
int cur_max = 0;
for (int k = j; k <= n - i; k++) {
cur_max = max(cur_max, a[k]);
f[i][j] = min(f[i][j], cur_max + f[i - 1][k + 1]);
}
}
return f[d][0];
}
};
时间复杂度 O ( d n 2 ) O(dn^2) O(dn2),空间 O ( d n ) O(dn) O(dn)。