零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3 
解释: 11 = 5 + 5 + 1

示例 2:

输入: coins = [2], amount = 3
输出: -1

说明:
你可以认为每种硬币的数量是无限的。

 思路:

使用dp[i]保存当前金额的最少硬币表示数量。

初始化dp[i]保存比初始金额要大得值,避免参与min的比较,

初始化硬币在dp[i]数组中的值dp[coins[j]]=1,

递推公式为dp[i]=min(dp[i],dp[i-coins[j]]+1);其实主要比较的是各个硬币之间的dp[i-coins[j]]的最小值,使用dp[i]存间接最小值,i-coins[j]表示选择j这个硬币之后的剩余金额,后面+1表示选择了j这个硬币,硬币数加1,

若最后dp[i]仍是初始值,说明没有选择到合适的硬币,返回-1.

class Solution {
    public int[] dp;
    public int coinChange(int[] coins, int amount) {
        if(amount==0||coins.length==0){return 0;}
        Arrays.sort(coins);
        dp = new int[amount+1];//存的是当前金额的最少硬币数量
        dp[0]=0;
        for(int i=0;i<amount+1;i++){
            dp[i]=amount+1;
        }
        for(int i=0;i<coins.length;i++){
            if(coins[i]>amount){
                continue;
            }
            dp[coins[i]]=1;
        }
        return countCoin(coins,amount);
    }
    
    //dp[i-coins[j]]表示金额i选择了coins[j]这枚硬币,去计算i-coins[j]这个金额的最小硬币,因此后面+1表示选择的这枚硬币数
    public int countCoin(int[] coins,int amount){
        if(amount==0||coins.length==0){return 0;}
      
        for(int i=1;i<=amount;i++){
            for(int j=0;j<coins.length&&coins[j]<i;j++){
                dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);
            }
        }
        
        if(dp[amount]==amount+1){
            return -1;
        }
       return dp[amount];
    }
}

 

<think>好的,我现在需要处理用户关于零钱兑换问题的查询。首先,用户希望了解牛客网上的解题思路以及编程解法。根据系统指令,我需要用中文回答,并且结构清晰,同时引用提供的参考资料。 首先,我得回忆零钱兑换问题的基本定义。这是个动态规划的经典问题,通常有两种变体:种是求最少硬币数凑金额,另种是求所有可能的组合方式数目。用户可能指的是最少硬币数的情况,但需要确认。不过根据常见的讨论,可能两者都需要提及。 接下来,我需要考虑如何将动态规划应用于这个问题。对于最少硬币数的情况,动态规划数组dp[i]表示凑金额i所需的最少硬币数。初始化时,dp[0]=0,其他初始化为个较大的值。然后,对于每个金额,遍历硬币数组,如果硬币面值小于等于当前金额,就更新dp[i]为min(dp[i], dp[i - coin] + 1)。这个思路是否正确呢?是的,这应该是标准的解法。 然后,关于组合数的问题,比如求总共有多少种不同的组合方式。这时候动态规划的状态转移方程会不同。例如,dp[i] += dp[i - coin],但需要注意避免重复计数。通常需要先遍历硬币,再遍历金额,以确保组合的顺序不会重复。这部分可能需要进步解释。 用户提到了牛客网的解题思路,所以需要结合引用中的内容。引用[2]和[3]提到牛客网的刷题模块和具体代码示例,比如二叉树的最大深度。但零钱兑换可能属于动态规划或贪心的模块。可能需要引导用户参考牛客网的对应模块,比如动态规划部分。 另外,需要确保回答中的LaTeX格式正确。例如,数学公式要用$...$或$$...$$。比如,状态转移方程可以写$dp[i] = \min(dp[i], dp[i - coin] + 1)$,而组合数的方程则是$dp[i] += dp[i - coin]$。 接下来,生相关问题。根据系统指令,需要生三个相关问题,可能涉及动态规划的不同变种、贪心算法的适用性以及实际应用场景。 还需要检查是否有相关的引用可以自然添加。例如,在解释分治算法时,可以引用[1],但零钱兑换属于动态规划,可能引用中的分治部分不直接相关。但用户的问题中提到了牛客网,所以引用[2]和[3]可能适用,比如在推荐刷题平台时。 现在,我需要组织回答结构,首先介绍问题,然后分情况讨论最少硬币数和组合数,给出代码示例,最后生相关问题。确保代码块使用正确的格式,并检查LaTeX是否正确应用。 最后,确认所有引用正确添加,例如在提到分治算法时引用[^1],在提到牛客网刷题时引用[^2][^3]。但根据用户的引用内容,引用[3]中的代码是关于二叉树的,可能不直接相关,但可以提到牛客网有类似的动态规划题目。</think>### 零钱兑换算法解析 零钱兑换是动态规划中的经典问题,常见两种变体: 1. **最少硬币数**:用最少数量硬币凑出目标金额。 2. **组合数**:硬币凑出目标金额的所有可能方式数目。 #### 1. 最少硬币数的动态规划解法 **状态定义**: - 设$dp[i]$表示凑出金额$i$所需的最少硬币数。 **状态转移方程**: $$dp[i] = \min(dp[i], dp[i - \text{coin}_j] + 1) \quad \text{当} \ i \geq \text{coin}_j$$ 其中$\text{coin}_j$为第$j$种硬币的面值。 **初始化**: - $dp[0] = 0$,其他$dp[i] = \infty$。 **代码示例**(Python): ```python def coin_change(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if coin <= i: dp[i] = min(dp[i], dp[i - coin] + 1) return dp[amount] if dp[amount] != float('inf') else -1 ``` #### 2. 组合数的动态规划解法 **状态定义**: - 设$dp[i]$表示凑出金额$i$的组合数。 **状态转移方程**: $$dp[i] += dp[i - \text{coin}_j] \quad \text{当} \ i \geq \text{coin}_j$$ 需按顺序遍历硬币以避免重复组合。 **初始化**: - $dp[0] = 1$(空组合),其他$dp[i] = 0$。 **代码示例**(Python): ```python def combination_sum(coins, amount): dp = [0] * (amount + 1) dp[0] = 1 for coin in coins: for i in range(coin, amount + 1): dp[i] += dp[i - coin] return dp[amount] ``` #### 牛客网相关题目 在牛客网中,零钱兑换类题目通常归类为动态规划或贪心算法模块。例如: - **题目编号NC212**:要求用最少硬币数凑出金额。 - **题目编号NC189**:求硬币组合数。 可参考牛客网的动态规划专题进行针对性练习[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值