给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回
-1
。示例 1:
输入: coins =[1, 2, 5]
, amount =11
输出:3
解释: 11 = 5 + 5 + 1示例 2:
输入: coins =[2]
, amount =3
输出: -1说明:
你可以认为每种硬币的数量是无限的。
思路:
使用dp[i]保存当前金额的最少硬币表示数量。
初始化dp[i]保存比初始金额要大得值,避免参与min的比较,
初始化硬币在dp[i]数组中的值dp[coins[j]]=1,
递推公式为dp[i]=min(dp[i],dp[i-coins[j]]+1);其实主要比较的是各个硬币之间的dp[i-coins[j]]的最小值,使用dp[i]存间接最小值,i-coins[j]表示选择j这个硬币之后的剩余金额,后面+1表示选择了j这个硬币,硬币数加1,
若最后dp[i]仍是初始值,说明没有选择到合适的硬币,返回-1.
class Solution {
public int[] dp;
public int coinChange(int[] coins, int amount) {
if(amount==0||coins.length==0){return 0;}
Arrays.sort(coins);
dp = new int[amount+1];//存的是当前金额的最少硬币数量
dp[0]=0;
for(int i=0;i<amount+1;i++){
dp[i]=amount+1;
}
for(int i=0;i<coins.length;i++){
if(coins[i]>amount){
continue;
}
dp[coins[i]]=1;
}
return countCoin(coins,amount);
}
//dp[i-coins[j]]表示金额i选择了coins[j]这枚硬币,去计算i-coins[j]这个金额的最小硬币,因此后面+1表示选择的这枚硬币数
public int countCoin(int[] coins,int amount){
if(amount==0||coins.length==0){return 0;}
for(int i=1;i<=amount;i++){
for(int j=0;j<coins.length&&coins[j]<i;j++){
dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);
}
}
if(dp[amount]==amount+1){
return -1;
}
return dp[amount];
}
}