中国剩余定理学习笔记

中国剩余定理

中国剩余定理常用来求解同余方程组,形如

xai(modm)i x ≡ a i ( mod m ) i

的方程组


首先,我们来讨论模数互质的:

对于这类问题应该怎么求解呢?

(果然我只是会背个板子)
首先,我们定义

M=mi M = ∏ m i

然后令
Mi=Mmi M i = M m i

定义
tiMimod mi t i 为 M i 在 m o d   m i 意 义 下 的 逆 元

(这里求逆元可以使用exgcd来求)

则最终的解就是

ans=iMitiai a n s = ∑ i M i t i a i

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long

using namespace std;

inline ll read()
{
  ll x=0,f=1;char ch=getchar();
  while (!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
  while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
  return x*f;
}

const int maxn = 210;

ll m[maxn],a[maxn];
ll n;
ll ans;
ll M=1;

void exgcd(ll &x,ll &y,ll a,ll b)
{
    if (b==0)
    {
        x=1;y=0;
        return;
    }
    exgcd(x,y,b,a%b);
    int tmp = x;
    x=y;
    y=tmp-a/b*y;
}

void crt()
{
   for (int i=1;i<=n;i++)
   {
      ll Mi=M/m[i];
      ll ti=0,y=0;
      exgcd(ti,y,Mi,m[i]);
      ans=(ans+Mi*ti%M*a[i]%M)%M;
   }
   while (ans<0)
   {
     ans+=M;
   }
}

int main()
{
  n=read();
  for (int i=1;i<=n;i++) m[i]=read(),a[i]=read(),M=M*m[i];
  crt();
  cout<<ans<<endl;
  return 0;
}

扩展中国剩余定理

那么如果模数不是互质的呢

这时候就需要拓展CRT了

对于

xa1(modm1) x ≡ a 1 ( mod m 1 )

xa2(modm2) x ≡ a 2 ( mod m 2 )

它等价于

x=a1+k1m1 x = a 1 + k 1 m 1

x=a2+k2m2 x = a 2 + k 2 m 2

联立之后,就能得到一个不定方程

k1m1k2m2=a2a1 k 1 m 1 − k 2 m 2 = a 2 − a 1

根据裴蜀定理,我们知道如果 gcd(m1,m2)|(a2a1) g c d ( m 1 , m 2 ) | ( a 2 − a 1 ) ,那么这个方程就有整数解

k1=m2gt+k1 k 1 = m 2 g t + k 1 ′

设最小正整数解为 k1 k 1 ′

那么 x=a1+k1m1=a1+m2gtm1+k1m1 x = a 1 + k 1 m 1 = a 1 + m 2 g t m 1 + k 1 ′ m 1

我们设 a1+k1m1 a 1 + k 1 ′ m 1 为x_0

那么 x=x0+m1m2gcd(m1,m2)t x = x 0 + m 1 m 2 g c d ( m 1 , m 2 ) t

则新的方程就变成了

xx0(modlcm(m1,m2)) x ≡ x 0 ( mod l c m ( m 1 , m 2 ) )

引入一道例题
poj2891

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>

using namespace std;

inline long long read()
{
  long long x=0,f=1;char ch=getchar();
  while (!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
  while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
  return x*f;
}

const int maxn = 1e6+1e2;

long long m[maxn],a[maxn];
long long M;
long long ans;
long long x0;
long long gcd;
int n;

long long exgcd(long long &x,long long &y,long long a,long long b)
{
    if (b==0)
    {
        x=1;
        y=0;
        return a;
    }
    long long cnt=exgcd(x,y,b,a%b);
    long long tmp = x;
    x=y;
    y=tmp-a/b*x;
    return cnt;
} 

long long solve()
{
    x0=a[1];//x0表示从第一个式子开始,合并到当前点的前一个时a是多少 
    M=m[1];//M同x0 
    long long x=0,y=0;
    for (int i=2;i<=n;i++)
    {
        gcd=exgcd(x,y,M,m[i]);
        if ((a[i]-x0)%gcd!=0) return -1;//判断不定方程的右边能不能整除gcd 
        x=x*(a[i]-x0)/gcd;//扩大相应的倍数 
        long long tmp = m[i]/gcd;
        x=(x%tmp+tmp)%tmp;//根据特解公式,防止爆掉 
        x0=x*M+x0;//求合并完的x0 
        M=M*m[i]/gcd;
        x0=x0%M;
    }
    x0=(x0+M)%M;
    return x0;
}
int main()
{
  while (scanf("%d",&n)!=EOF)
  {
    for (int i=1;i<=n;i++)
      m[i]=read(),a[i]=read();
    printf("%lld\n",solve());
  }
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值