最近学习了一波LCT qwq
强势安利Flashhu的博客!!!!!
真的特别详细(可惜我不会弄链接)
如果有想要学习
L
C
T
LCT
LCT的同学,可以直接看他的博客
我这里就简单写一点自己的体会啊。
L C T LCT LCT大致上就是一个支持加边,删边,维护子树信息,路径修改,维护路径信息的一个数据结构
本质上LCT是一个实虚链划分
代码的话,主要是分为几个部分
首先是判断这个点是不是根 和 其儿子关系,也就是 n o t r o o t notroot notroot和 s o n son son函数
int son(int x)
{
if (ch[fa[x]][0]==x)
return 0;
else return 1;
}
bool notroot(int x)
{
return (ch[fa[x]][0]==x) || (ch[fa[x]][1]==x);
}
这块还是比较好理解的。
下面就是和平衡树 s p l a y splay splay很接近的两个操作了, r o t a t e rotate rotate和 s p l a y splay splay
需要注意的是,这里的 r o t a t e rotate rotate需要判断 y y y是不是 r o o t root root,而且 s p l a y splay splay的时候,需要先下放一些修改标记(按照从上到下的顺序下放)
void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if(notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
//cout<<1<<endl;
}
void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while(notroot(y)){y=fa[y];st[++cnt]=y;}
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (!notroot(y)) rotate(x);
else
//if (notroot(y))
{
if (b==c)
{
rotate(y);
rotate(x);
}
else
{
rotate(x);
rotate(x);
}
}
//cout<<1<<endl;
}
update(x);
}
下面就是 L C T LCT LCT的核心操作 a c c e s s access access
a c c e s s ( x ) access(x) access(x)表示将根到x的路径都打通,也就是弄到同一个 s p l a y splay splay里面,具体的话,就是每次每次转到splay的顶部,然后连边,顺便 u p d a t e update update
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
}
其他操作就不在这里体现了
QWQ
那么回归这个题,其实如果了解了 L C T LCT LCT的相关操作话,这就是一个LCT的模板题
所以直接上代码了
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e6+1e2;
int fa[maxn],ch[maxn][3];
int rev[maxn],sum[maxn];
int n,m;
int val[maxn];
int st[maxn];
int son(int x)
{
if (ch[fa[x]][0]==x)
return 0;
else return 1;
}
bool notroot(int x)
{
return (ch[fa[x]][0]==x) || (ch[fa[x]][1]==x);
}
void update(int x)
{
sum[x]=sum[ch[x][0]]^sum[ch[x][1]]^val[x];
}
void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pushdown(int x)
{
if (rev[x])
{
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if(notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
//cout<<1<<endl;
}
void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while(notroot(y)){y=fa[y];st[++cnt]=y;}
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (!notroot(y)) rotate(x);
else
//if (notroot(y))
{
if (b==c)
{
rotate(y);
rotate(x);
}
else
{
rotate(x);
rotate(x);
}
}
//cout<<1<<endl;
}
update(x);
}
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
}
void makeroot(int x)
{
access(x);
//splay(x);
reverse(x);
}
int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
//splay(x);
return x;
}
void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
}
void link(int x,int y)
{
makeroot(x);
if (findroot(y)!=x) fa[x]=y;
}
void cut(int x,int y)
{
split(x,y);
if (ch[x][0] || ch[x][1] ||fa[x]!=y || ch[y][son(x)^1]) return;
fa[x]=ch[y][0]=0;
}
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) val[i]=read();
for (int i=1;i<=m;i++)
{
int opt=read(),x=read(),y=read();
if(opt==0)
{
split(x,y);
printf("%d\n",sum[y]);
}
if(opt==1)
{
link(x,y);
}
if (opt==2)
{
cut(x,y);
}
if (opt==3)
{
splay(x);
val[x]=y;
}
}
return 0;
}