这个题的思路还是比较巧妙的。
首先,我们发现操作只有删除和询问两种,而删除并不好维护连通性和割边之类的信息。
所以我们不妨像WC2006水管局长那样,将询问离线,然后把操作转化成加边和询问。
然后,我们会发现,若存在一条边 x − > y x->y x−>y,那么原本x到y的所有割边,都会变成非割边。
那意味着什么呢?
似乎加边操作,可以直接转化成区间修改。
那我们就可以首先对不涉及删除边,建一个生成树。(题目保证一定合法)
那么对于一棵树,所有的边都是割边,所以一开始所有的边的边权都是1(这里为了修改方便,我们将边权直接转化成点权了),也就是说树上除了根以外,权值都是1.
然后依次插入那些没有被删除,但是没有在生成树里面的边。每插入一条边,就涉及到一次链修改,将一条链的点的权值变成
0
0
0。
然后操作中的加边也是同理。
对于询问的话,直接询问
(
x
,
y
)
(x,y)
(x,y)的路径和就好。
但是有一个需要注意的地方就是。由于我们边权转点权,所以
l
c
a
lca
lca处的点不属于路径,修改和询问的时候都需要注意的。
有些细节直接看代码吧
#include<bits/stdc++.h>
#define mk make_pair
#define pb push_back
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
const int maxm = 2*maxn;
struct Node{
int opt,x,y;
};
Node a[maxm];
int f[4*maxn];
int add[4*maxn];
int n,m,fa[maxn];
int dfn[maxn],size[maxn],newnum[maxn],deep[maxn];
int top[maxn],son[maxn];
int point[maxn],nxt[maxm],to[maxm];
int in[maxn],tag[maxn];
int newval[maxn];
map<pair<int,int>,int> mp;
int cnt;
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
void dfs(int x,int faa,int dep)
{
deep[x]=dep;
size[x]=1;
int maxson = -1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (p==faa) continue;
fa[p]=x;
dfs(p,x,dep+1);
size[x]+=size[p];
if (size[p]>maxson)
{
maxson=size[p];
son[x]=p;
}
}
}
int tot;
void dfs1(int x,int chain)
{
newnum[x]=++tot;
//cout<<x<<" "<<tot<<"****"<<endl;
newval[tot]=1;
top[x]=chain;
if (!son[x]) return;
dfs1(son[x],chain);
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if(!newnum[p])
{
dfs1(p,p);
}
}
}
void up(int root)
{
f[root]=f[2*root]+f[2*root+1];
}
void pushdown(int root,int l,int r)
{
if (add[root]!=-1)
{
add[2*root]=add[root];
add[2*root+1]=add[root];
int mid = l+r >> 1;
f[2*root]=(mid-l+1)*add[root];
f[2*root+1]=(r-mid)*add[root];
add[root]=-1;
}
}
void build(int root,int l,int r)
{
add[root]=-1;
if(l==r)
{
f[root]=newval[l];
return;
}
int mid = l+r >> 1;
build(2*root,l,mid);
build(2*root+1,mid+1,r);
up(root);
}
void update(int root,int l,int r,int x,int y,int p)
{
if (x<=l && r<=y)
{
add[root]=p;
f[root]=(r-l+1)*p;
return;
}
pushdown(root,l,r);
int mid = l+r >> 1;
if (x<=mid) update(2*root,l,mid,x,y,p);
if (y>mid) update(2*root+1,mid+1,r,x,y,p);
up(root);
}
int query(int root,int l,int r,int x,int y)
{
if (x<=l && r<=y)
{
return f[root];
}
pushdown(root,l,r);
int mid = l+r >> 1;
int ans = 0;
if (x<=mid) ans=ans+query(2*root,l,mid,x,y);
if (y>mid) ans=ans+query(2*root+1,mid+1,r,x,y);
return ans;
}
void treeadd(int x,int y,int z)
{
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
update(1,1,n,newnum[top[x]],newnum[x],z);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
int pre = query(1,1,n,newnum[x],newnum[x]);
update(1,1,n,newnum[x],newnum[y],z);
update(1,1,n,newnum[x],newnum[x],pre);
}
int treesum(int x,int y)
{
int ans=0;
while (top[x]!=top[y])
{
if (deep[top[x]]<deep[top[y]]) swap(x,y);
ans=ans+query(1,1,n,newnum[top[x]],newnum[x]);
x=fa[top[x]];
}
if (deep[x]>deep[y]) swap(x,y);
int pre = query(1,1,n,newnum[x],newnum[x]);
ans=ans+query(1,1,n,newnum[x],newnum[y]);
ans-=pre;
return ans;
}
int x[maxm],y[maxm];
int ffa[maxn];
int ans[maxm];
int find(int x)
{
if (ffa[x]!=x) ffa[x]=find(ffa[x]);
return ffa[x];
}
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) ffa[i]=i;
for (int i=1;i<=m;i++)
{
x[i]=read(),y[i]=read();
mp[mk(x[i],y[i])]=mp[mk(y[i],x[i])]=i;
}
int tmp=0;
while (1)
{
int opt=read();
if(opt==-1) break;
a[++tmp].opt=opt;
a[tmp].x=read();
a[tmp].y=read();
}
for (int i=1;i<=tmp;i++) if (a[i].opt==0) tag[mp[mk(a[i].x,a[i].y)]]=1;
for (int i=1;i<=m;i++)
{
if (tag[i]) continue;
int f1=find(x[i]);
int f2=find(y[i]);
if (f1==f2) continue;
ffa[f1]=f2;
addedge(x[i],y[i]);
addedge(y[i],x[i]);
in[i]=1;
}
dfs(1,0,1);
dfs1(1,1);
newval[1]=0;
build(1,1,n);
int tmp1=0;
for (int i=1;i<=m;i++)
{
if (tag[i] || in[i]) continue;
treeadd(x[i],y[i],0);
}
for (int i=tmp;i>=1;i--)
{
if (a[i].opt==0)
{
treeadd(a[i].x,a[i].y,0);
}
else
{
ans[++tmp1]=treesum(a[i].x,a[i].y);
}
}
for (int i=tmp1;i>=1;i--)
{
cout<<ans[i]<<"\n";
}
return 0;
}