qwq
我感觉这都已经不算是斜率优化
d
p
dp
dp了,感觉更像是qwq一个
下
凸
壳
优
化
下凸壳优化
下凸壳优化转移递推式子。
qwq
首先我们先定义几个数组
s
w
[
i
]
sw[i]
sw[i]表示
w
[
i
]
w[i]
w[i]的前缀和
v
a
l
[
i
]
=
w
[
i
]
×
d
[
i
]
val[i] = w[i]\times d[i]
val[i]=w[i]×d[i]
s
u
m
[
i
]
sum[i]
sum[i]表示
v
a
l
[
i
]
val[i]
val[i]的前缀和。
d
i
s
[
i
]
dis[i]
dis[i]表示
i
i
i到山脚下的距离
f
[
i
]
f[i]
f[i]表示在
i
i
i建第一个厂的最小代价。
一个比较容易发现的性质是,厂一定是建在老树的点上。
因为考虑我们在假设我们现在在一个非老树的点上,而左边的 s w sw sw大于右边的 s w sw sw,那么我们现在向左边移动一定是更优秀的,右边大也是同理。
我们先考虑只建一个厂,也就是 f [ i ] f[i] f[i]该如何求。
一个比较显然的递推 f [ i ] = f [ i − 1 ] + s w [ i − 1 ] ∗ d [ i − 1 ] − v a l [ i ] f[i]=f[i-1]+sw[i-1]*d[i-1]-val[i] f[i]=f[i−1]+sw[i−1]∗d[i−1]−val[i]
表示在这个厂建的代价为在之前那个厂的代价+之前的树木从上个厂移动到这个厂的代价,减去这个厂下去的代价。
然后那我们应该怎么求 g [ i ] g[i] g[i]呢, g [ i ] g[i] g[i]表示 i i i之前有一个厂,且在 i i i建第二个厂的最小代价。
g [ i ] = m i n ( f [ j ] − ( s w [ i ] − s w [ j ] ) ∗ d i s [ i ] ) g[i]=min(f[j]-(sw[i]-sw[j])*dis[i]) g[i]=min(f[j]−(sw[i]−sw[j])∗dis[i])
这个式子表示在 i i i这个地方建厂上,是在 j j j的基础上,又把 j 到 i j到i j到i的老树的路程进一步缩短了。
最后我们只需要输出 m i n ( g [ i ] ) min(g[i]) min(g[i])即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e5+1e2;
int n,m;
int w[maxn],d[maxn];
int f[maxn];
int dis[maxn],val[maxn],sum[maxn];
int sw[maxn];
struct Point{
int x,y,num;
};
Point q[maxn];
int chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if (chacheng(x,y)<=0) return true;
return false;
}
int head=1,tail=0;
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while(tail>=head+1 && q[head+1].y-q[head].y < lim * (q[head+1].x-q[head].x)) head++;
}
int g[maxn];
signed main()
{
n=read();
for (int i=1;i<=n;i++) w[i]=read(),d[i]=read(),dis[i]=d[i];
for (int i=n-1;i>=1;i--) dis[i]+=dis[i+1];
for (int i=1;i<=n;i++) sw[i]=sw[i-1]+w[i];
for (int i=1;i<=n;i++) val[i]=w[i]*dis[i];
for (int i=1;i<=n;i++) sum[i]=sum[i-1]+val[i];
f[0]=sum[n];
for (int i=1;i<=n;i++) f[i]=f[i-1]+sw[i-1]*d[i-1]-val[i];
push((Point){0,f[0],0});
for (int i=1;i<=n;i++)
{
pop((-1)*dis[i]);
int now = q[head].num;
g[i]=f[now]-(sw[i]-sw[now])*dis[i];
push((Point){sw[i],f[i],i});
}
int now = q[head].num;
int ans=1e18;
ans=f[0];
for (int i=1;i<=n;i++) ans=min(ans,g[i]);
cout<<ans;
return 0;
}