非经典逻辑证明复杂性的深入探究
1. 非经典逻辑中的基本性质
在非经典逻辑的证明复杂性研究中,直觉主义逻辑的析取性质是早期的重要研究课题之一。若 $\phi \vee \psi$ 是直觉主义重言式,那么 $\phi$ 或者 $\psi$ 本身就是直觉主义重言式。Buss、Mints 和 Pudlák 证明了该析取性质具有可行形式:对于直觉主义逻辑的标准自然演绎演算(与通常的直觉主义 Frege 系统多项式等价),存在算法 $A$,对于析取式 $\phi \vee \psi$ 的每个证明 $\pi$,算法 $A$ 能在 $\pi$ 大小的多项式时间内输出 $\phi$ 或 $\psi$ 的证明。
随后,Ferrari、Fiorentini 和 Fiorino 将这一结果扩展到其他逻辑,证明了直觉主义自然演绎、S4、S4.Grz 和 S4.1 的自然演绎系统,以及 GL 和 Fisher Servi 的 IK 的 Frege 系统都具有可行析取性质。
与可行析取相关的是可行插值性质。可行插值是证明复杂性中确定下界的通用方法之一,由 Krajíček 提出,并成功应用于 Resolution 或 Cutting Planes 等弱系统的下界证明,但对 Frege 系统及其扩展不适用。对于直觉主义逻辑,可行插值性质表现为:从直觉主义重言式 $(p_1 \vee \neg p_1) \wedge \cdots \wedge (p_n \vee \neg p_n) \to \phi_0(\bar{p}, \bar{q}) \vee \phi_1(\bar{p}, \bar{r})$ 的证明 $\pi$ 中,可以构造一个大小为 $|\pi|^{O(1)}$ 的布尔电路 $C$,对于每个输入 $
订阅专栏 解锁全文
829

被折叠的 条评论
为什么被折叠?



