首先贴上两种差距微妙的解题代码
第一种
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> result = new LinkedList<>();
boolean[] visited = new boolean[nums.length];
Arrays.sort(nums);
backtrack(result,nums,visited,new ArrayList<>());
return result;
}
public void backtrack(List<List<Integer>> result,int[] nums,boolean[] visited, List<Integer> list){
if(nums.length == list.size()){
result.add(new ArrayList<>(list));
return;
}
for (int i = 0; i < nums.length; i++) {
if(visited[i] || i > 0 && nums[i] ==nums[i-1] && !visited[i-1]){
continue;
}
visited[i] = true;
list.add(nums[i]);
backtrack(result,nums,visited,list);
visited[i] = false;
list.remove(list.size()-1);
}
}
执行用时:1 ms, 在所有 Java 提交中击败了99.30%的用户
内存消耗:38.5 MB, 在所有 Java 提交中击败了99.01%的用户
第二种
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> result = new LinkedList<>();
boolean[] visited = new boolean[nums.length];
Arrays.sort(nums);
backtrack(result,nums,visited,new ArrayList<>());
return result;
}
public void backtrack(List<List<Integer>> result,int[] nums,boolean[] visited, List<Integer> list){
if(nums.length == list.size()){
result.add(new ArrayList<>(list));
return;
}
for (int i = 0; i < nums.length; i++) {
if(visited[i] || i > 0 && nums[i] ==nums[i-1] && visited[i-1]){
continue;
}
visited[i] = true;
list.add(nums[i]);
backtrack(result,nums,visited,list);
visited[i] = false;
list.remove(list.size()-1);
}
}
执行用时:2 ms, 在所有 Java 提交中击败了41.87%的用户
内存消耗:39.1 MB, 在所有 Java 提交中击败了67.89%的用户
非常直观的1ms的差距,并且这个差距并不是因为leetCode服务的压力带来的,多次执行的结果基本稳定
而这里面的代码差距只有一行
if(visited[i] || i > 0 && nums[i] ==nums[i-1] && !visited[i-1]){
对比
if(visited[i] || i > 0 && nums[i] ==nums[i-1] && visited[i-1]){
一个!的区别
首先讲讲这个分支条件做了什么,这是一个剪枝条件,作用是用于保证重复数字只会被填入一次
但是两个不同的判断不一样在什么地方呢?
前者,有!的版本,保证的是:对于重复数的集合,一定是从左往右逐个填入的。
后者,没有!的,则保证的是:对于重复数的集合,一定是从右往左逐个填入的。
咋一看这似乎没有区别啊,笔者刚发现这个问题的时候也是一脸懵,遂深入进行了细致分析,直接把不同的程序过程的过梳理出来
假设输入条件:
输入:nums = [1,1,1,2]
这里面3个重复元素分别用 A,B,C来表示
剪枝法1
剪枝法2
从上图可以看出,在仅有1种3个重复元素的情况下,第二种剪枝法的确可以减少递归层数,可想在更多重复元素的情况下,使用第一种剪枝方式可以更加有效减少递归层数,因此才会出现1ms的用时差距
不过笔者现在还没有想出如何使用数学的方式证明这一点,尽管官方给出了第一种方式的时间复杂度分析