pyspark rdd def partitionBy自定义partitionFunc

本文介绍了pyspark中RDD的partitionBy函数,重点讲解了如何使用自定义分区函数。该函数允许用户根据需求设置分区数量(numPartitions)和分区逻辑(partitionFunc),默认使用哈希函数。示例中展示了使用lambda表达式根据int值进行分区,并提供了partitionBy的源码片段,帮助理解其工作原理。
摘要由CSDN通过智能技术生成

partitionBy(self, numPartitions, partitionFunc=portable_hash): 函数里主要有两个参数,一个是numPartitions ,这个是分区的数量,大家都知道。

另一个是partitionFunc,这个分区的函数,默认是哈希函数。当然我们也可以来自定义:

data = sc.parallelize(['1', '2', '3', ]).map(lambda x: (x,x)).collect()

wp = data.partitionBy(data.count(),lambda k: int(k))

print wp.map(lambda t: t[0]).glom()
PySpark RDD是一种分布式的数据集,它是PySpark的核心抽象之一。RDD代表弹性分布式数据集(Resilient Distributed Dataset),它是由一系列分区组成的可并行处理的集合。RDD可以包含任何类型的对象,并且可以在集群上进行并行操作。 PySpark RDD可以通过不同的方式创建,其中一种常见的方式是使用`sc.parallelize`方法,该方法可以将Python列表、NumPy数组或Pandas Series/Pandas DataFrame转换为Spark RDD。例如,通过以下代码可以使用列表创建一个RDD: ```python rdd = sc.parallelize([1, 2, 3, 4, 5]) ``` 这将创建一个名为`rdd`的RDD对象,其中包含了列表中的元素。RDD支持各种转换和操作,例如映射、过滤、排序和聚合等。你可以使用这些操作来对RDD进行变换和计算,最终得到你想要的结果。 PySpark提供了丰富的文档来帮助你了解RDD的更多细节和使用方法。你可以参考Spark官方网站的RDD编程指南和PySpark官方文档,它们提供了详细的介绍和示例代码,帮助你更好地理解和使用PySpark RDD。 总结起来,PySpark RDD是一种分布式的可并行处理的数据集,它可以通过不同的方式创建,例如使用`sc.parallelize`方法RDD支持各种转换和操作,它是PySpark中非常重要的概念之一。 参考文献: Spark官方网站 - RDD编程指南:http://spark.apache.org/docs/latest/rdd-programming-guide.html PySpark官方文档:https://spark.apache.org/docs/latest/api/python/index.html
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值