1、探索 Expect:自动化交互工具的全面指南

探索 Expect:自动化交互工具的全面指南

1. Expect 简介

1.1 Expect 的魅力与挑战

Expect 是一款用于自动化交互工具的软件套件,它广受欢迎。其优势在于让人们能更轻松地完成任务,甚至能实现以往不敢尝试的操作。它并非普通语言,而是一种全新工具,能解决过去未被察觉的问题。

然而,随着功能不断增加,它变得愈发复杂。尽管有 25 页的“手册页”,但人们仍不断索取手册中未涵盖的信息,如示例和建议。本书旨在以教程形式详细阐述 Expect 的方方面面,同时也会提及它的局限性。

1.2 为何需要 Expect

起初,作者认为 Expect 不会长久,只是为证明交互自动化通用方法的必要性而做的实验,期望当时流行的 shell 能集成相关功能。但现实并非如此,多数 shell 缺乏对伪终端的访问和内联流模式匹配功能。

此外,像 Emacs 和 Perl 等环境虽有类似功能,但使用不便。相比之下,Expect 简单且专注于自动化交互程序,同时它基于 Tcl,提供了良好的工作环境。

1.3 Tcl 的历史渊源

Tcl 是一种小巧且简单的嵌入式语言,它是 Expect 背后的支撑。Tcl 强大而优雅,在原语与可扩展性、简单性与过度复杂性之间取得了平衡。

作者最初想编写类似 Expect 的程序,但苦于没有合适的可扩展控制语言。1990 年,在华盛顿特区的 Winter USENIX 会议上,作者了解到 John Ousterhout 设计的 Tcl 语言,它正好满足需求。下载 Tcl 八天后,作者就有了一个原始但可用的 Expect。

基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值