景驰无人车披露最新技术进展,2年后开启国内规模化运营 | 视频

李根 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

640?wx_fmt=jpeg

景驰无人车最近怎么样了?

在6月初,他们对外展示过台风天穿越江底隧道的路测视频,秀了一把传感器融合、定位以及感知算法上的技术实力。

但对于景驰来说,这还不够。

因为他们的核心目标是实现L4级无人驾驶车队的城市运营,而且还是在中国,这就要求要有更多复杂场景的智能处理。

所以景驰今天,对外分享了自己当前在复杂场景、特别是长尾(long tail)场景的处理能力。

长尾场景

景驰方面介绍称,无人驾驶测试中的正常场景,主要指出现频繁且交规明确的场景,比如换道超车,通过红绿灯控制的路口,无红绿灯控制的无保护左转、右转等。这些场景相对容易处理。

而长尾场景主要指种类繁多、发生概率较低或者突发的场景,比如闯红灯的车辆,横穿马路的行人,红绿灯损坏的路口,路边违章停靠的车辆等。

640?wx_fmt=jpeg

 景驰在广州的无人车队

这些场景不按常理出牌,样式繁多,处理难度大,但却是无人驾驶在中国城市落地的关键之一。

那如何有效、快速的训练算法去处理长尾场景?

先看一段实际路测视频:


景驰通过视频展示了无人车面临并需要处理的复杂场景:包括在狭窄的双向单车道上,和行人、同向车辆、反向车辆交互;与同向或逆行的自行车交互;与大批横穿马路的行人交互;以及和大量占用车道的行人、自行车交互。

当然,景驰也秀了一把在运动规划方面的算法实力。

他们也在此次对外分享了技术实现背后的原理。

首先是真实道路的数据积累。景驰透露,目前拥有25辆L4级别的无人驾驶车队,每天在三个城市公共道路上跑上千公里收集数据并测试算法。

其次,为了更高频率的遇到更多的长尾场景,无人车还需要通过模拟器(simulation)进行“特训”。

景驰也披露,目前模拟器目前已经实现了高可信,大场景,大批量,云端模拟的能力,能够营造出一个逼真的虚拟世界。

工程师们可以在城市大小的地图内聚焦更细致交互,比如闪烁的红绿灯,不同行径的智能车辆以及穿梭而过的行人、自行车。

单个场景最多可以模拟上万辆汽车、自行车、行人或其他路上可能出现的障碍物。

在模拟器中,景驰小车每天不间断奔跑22000公里,不断测试新技巧并提升原有技能。模拟器还会根据景驰小车在20多个安全、性能维度的表现进行打分,反馈给工程师。

也是日夜不停地如此“特训”,让景驰无人车每天都在变得更聪明、更安全。


以上视频展示了景驰模拟器的真实工作效果。景驰小车在上百个模拟车辆,自行车和行人间运行。

这些模拟的车辆、自行车、行人能够智能的等待红绿灯并遵守交规避让,也可以根据需要执行“违规“动作。

正是通过这些真实路测和虚拟场景的特训,景驰无人车正在逐步变身为经验丰富的老司机,在处理长尾场景的数量和难度上不断提升。

640?wx_fmt=jpeg

 李开复博士试乘景驰无人车

最后,景驰也披露了小目标:将在2020年于中国实现规模化无人驾驶运营。

作者系网易新闻·网易号“各有态度”签约作者


加入社群

量子位AI社群18群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot8入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot8,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

实习生招聘

量子位正在招募活动运营实习生,策划执行AI明星公司CEO、高管等参与的线上/线下活动,有机会与AI行业大牛直接交流。工作地点在北京中关村。简历欢迎投递到quxin@qbitai.com


具体细节,请在量子位公众号(QbitAI)对话界面,回复“实习生”三个字。

640?wx_fmt=jpeg

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值