1.1算法的定义
算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。
1.2算法的特性
- 输入:算法具有零个或多个输入
- 输出:至少有一个或多个输出
- 有穷性:算法在执行有限的步骤后,自动结束而不会出现无限循环,并且每一个步骤在可接受时间内完成。
- 确定性:算法的每一步骤都具有确定的含义,不会出现二义性。(在一定条件下,只有一条执行路径,相同的输入只能有唯一 的输出结果)
- 可执行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次完成。
1.3算法的设计要求
1.3.1 正确性
算法至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的需求、能够得到问题的正确答案。大体分为以下四个层次:
- 算法程序没有语法错误
- 算法对于合法的输入数据能够产生满足要求的输出结果
- 算法程序对于非法的输入数据能够得出满足规格说明的结果
- 算法程序对于精心选择的,甚至刁难的测试数据都有满足要求的输出结果
1.3.2 可读性
算法设计的另一个目的是为了方便阅读、理解和交流
1.3.3 健壮性
当输入输入不合法时,算法也能够作出相关处理,而不是产生异常或莫名其妙的结果。
1.3.4 时间效率高和存储量低
算法设计应该尽量满足时间效率和存储量低的需求。
1.4算法效率的度量
1.4.1事后统计法
通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。
这种方法明显有很大的缺陷:
- 必须依靠算法事先编写好程序,好费时间精力,而且结果可能很糟糕。
- 时间的比较依赖计算机硬件和软件等环境因素
- 算法的测试数据设计困难,并且程序的运行时间往往与测试数据的规模有很大的关系,效率高的算法在小的测试数据面前根本得不到体现。
1.4.2事前分析估算法
在计算机程序编制前,依据统计方法对算法进行评估。一个高级程序语言编写的程序在计算机上运行时消耗的时间取决于以下因素:
- 算法采用的策略、方法
- 编译产生的代码质量
- 问题的输入规模
- 机器执行指令的速度
第1条是算法好坏的根本,第2条要由软件来支持,第4条要看中硬件的性能。一个程序的运行时间,依赖于算法的还坏和问题的输入规模。所谓问题输入规模是指输入量的多少。
最终,在分析程序运行时间时,最重要的是把程序看成独立于程序设计语言的算法或一系列步骤。
1.5 算法的时间复杂度
1.5.1算法时间复杂度的定义
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随 n 的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。这样用大写O()来体现算法时间复杂度的记法,我们称为大O记法。
推导大O阶;
- 用常数1取代运行时间中的所有加法常数
- 在修改后运行次数函数中,只保留最高阶项
- 如果最高阶项存在且不是1,则去除与这个项相乘的常数。
常用的时间复杂度所耗费时间从小到大依次是:
O(1) < O(log n) < O(n) < O(nlogn) < O(n²)< O(n³) < O(n!) < O(nⁿ)