机器学习
文章平均质量分 95
Y_hero
不破不立,破而后立
展开
-
从遗传算法走进TOPT的auto
1.简述遗传算法 元启发式算法(Meta-heuristic algorithms)模拟进化过程,通过选择(Selection)、交叉(Crossover)以及变异(Mutation)等机制,在每次迭代中都保留一组候选个体,重复此过程,种群经过若干代进化后,理想情况下其适应度达到***近似最优***的状态。参考链接:https://www.zhihu.com/question/23293449/answer/1202209742.核心概念将自变量空间编码成染色体,对应的实例称为个体,开始类似于随原创 2020-12-21 17:58:31 · 849 阅读 · 0 评论 -
PCA的劣势分析
PCA原理剖析矩阵的秩 特征向量 特征值是什么?此篇博客主要分析PCA有什么劣势以及产生的原因,对PCA还不清楚的可以结合上面两个博客从多角度深入了解PCA。劣势一,在对数据完全无知的情况下,PCA变换并不能得到较好的保留数据信息。因为PCA需要对数据进行预处理,第一步需要对其进行中心化,如果数据的尺度不统一,还需要标准化。通常的标准化方式是除以标准差。这里可能就出出现一个问题,比如标准差...原创 2019-03-25 16:22:14 · 11516 阅读 · 0 评论 -
高斯径向基函数(RBF)神经网络
高斯径向基函数(RBF)神经网络牛顿插值法-知乎泰勒公式径向基函数-wiki径向基网络之bp训练RBF网络逼近能力及其算法线性/非线性,使用”多项式“逼近非线性,通过调节超参数来改善多项式参数进一步拟合真实非线性。径向基函数说径向基网络之前,先聊下径向基函数径向基函数(英语:radial basis function,缩写为RBF)是一个取值仅依赖于到原点距离的实值函数,即 ϕ(x...原创 2019-04-03 00:53:52 · 33853 阅读 · 5 评论 -
KPCA算法浅析
二者都是在PCA和LDA的基础上加入了核函数,从线性变化到非线性变化,因此建议先搞懂什么是PCA、LDA和核函数。KPCA我们先来看一个实际问题,图b是样本在二维空间中的分布,称为本真二维结构,然后以S形曲面嵌入到三维空间中,形成图a的空间结构,如果使用线性降维的方法,会丢失低维结构,得到一个图c这样的二维空间结构。面对上述问题,我们就不能采用传统的线性降维方法了,这时候就要使用我们的核主...转载 2019-04-03 13:45:17 · 6624 阅读 · 1 评论 -
LIBSVM 下载使用及实战
1. LIBSVM 下载libsvm It makes everything automatic–from data scaling to parameter selection.libsvm下载安装后使用libsvm训练模型,出现 gnuplot executable not found此时需要安装gnuplot下载地址安装完成后,更改**gnuplot_exe =**的路径为你gnu...原创 2019-05-29 12:00:07 · 6534 阅读 · 1 评论 -
决策树原理详解及sklearn代码实例
1.决策树1.1基本流程决策树(decsioin tree)是一种常见的机器学习方法,例如西瓜书中的二分类任务,判断瓜的好坏。决策树如下:可以看到此使判断西瓜是否好坏,则通过色泽,根蒂,敲声等一些列属性来得出结果。 一般的,一颗决策树包括一个根节点,若干个内部接待你和若干个叶结点;叶节点对应于决策结果,其他结点则对应一个属性测试;从根节点大到每个叶结点的路径对应了一个判定测试序列。决策树...原创 2019-03-10 00:23:49 · 7395 阅读 · 2 评论 -
产生式模型和判别式模型区分
近来看到贝叶斯分类器,其中有一个知识点提及产生式模型和判别式模型,查阅了一番资料终于理解透彻了,特此记录。产生式模型和判别式模型区分二者是分类器中常遇到的概念,产生式模型估计它们的联合概率分布P(x,y),判别式模型估计条件概率分布P(y|x)。判别式模型常见的主要有:Logistic RegressionSVMTraditional Neural NetworksNearest N...原创 2019-03-20 20:32:49 · 2751 阅读 · 0 评论 -
最近邻算法(KNN)
1.算法概述 目前,对于文本分类的研究已经取得了巨大的进展,常用的文本分类算法有最近邻算法(KNN),支持向量机,人工神经网络,boosting,随机森林等。而KNN算法既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。基于实例的学习方法:1.只是简单地把训练样例存储起来。等到输入一个新的查询实例时,才分析这个新实例和之前存储的实例之间的关系。**该...原创 2019-03-17 18:00:50 · 4660 阅读 · 0 评论 -
机器学习中的kernel是什么?(待补充)
近来看到SVM和核化线性降维KPCA,对其中的核函数难以理解,因此去查阅了众多资料,接下来简单记录总结下对kernel的认识。知乎问题链接参考kernel是什么 ? 首先我们先给出kernel的定义:核函数(kernel function)就是指K(x,y)=<f(x),f(y)>,其中x和y是n维的输入值,f()指的是n维到m维的映射(通常m>>n),<x...原创 2019-03-21 17:08:48 · 9526 阅读 · 0 评论