You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
你是一个计划沿街抢劫房屋的职业强盗。每个房子都有一定数量的钱被藏起来,阻止你抢劫他们的唯一限制是相邻的房子都有安全系统连接,如果两个相邻的房子在同一天晚上被闯入,它会自动联系警察。
给出一个非负整数列表,表示每户人家的钱数,确定你今晚不报警就能抢劫的最大钱数。
Example 1:
Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
Solutions:
Python
'''
(1) max_pro[i]表示在抢到第i家的时候,所得的最大利益:
这个时候要么抢第i家,获得最大利益为max_pro[i-2]+nums[i],
要么不抢第i家,获得最大利益为max_pro[i-2]
max_pro[0] = nums[0]
max_pro[1] = max(nums[1],nums[0])
...
max_pro[i] = max(max_pro[i-2]+nums[i],max_pro[i-1])
'''
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
if len(nums) == 1:
return nums[0]
length = len(nums)
max_pro = [0 for i in range(length)]
max_pro[0] = nums[0]
max_pro[1] = max(nums[0],nums[1])
for i in range(2,length):
max_pro[i] = max(nums[i]+max_pro[i-2],max_pro[i-1])
return max_pro[-1]
(2)方法2将方法1所占空间缩减为常数空间复杂度
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
if len(nums) == 1:
return nums[0]
length = len(nums)
a = nums[0]
b = max(nums[1],nums[0])
for i in range(2,length):
tmp = b
b = max(a + nums[i],tmp)
a = tmp
return max(a,b)
Reference: