CSAPP读书笔记与习题作业练习-第2章

CSAPP读书笔记与习题作业练习-第2章

疑问

疑问一 练习题2.41解答中 m = 0 m=0 m=0的问题(已解决)

问题:练习题2.41解答将情况分为 m > 0 m>0 m>0 m = 0 m=0 m=0两种情况,在证明 m > 0 m>0 m>0的情况后指出 m = 0 m=0 m=0时形式A和B都会少一次移位。为什么需要考虑m=0的情况?

回答:当 m = 0 m=0 m=0x<<m即x本身,不需要计算左移0位的结果。

习题

练习题2.1

A. 0011 1001 1010 0111 1111 1000
B. 0XC97B
C. 1101 0101 1110 0100 1100
D. 0X26E7B5

练习题2.2

n n n 2 n 2^n 2n(十进制) 2 n 2^n 2n(十六进制)
9 512 0x200
19 524288 0x80000
14 16384 0x4000
16 65536 0x10000
17 131072 0x20000
5 32 0x20
7 128 0x80

练习题2.3

十进制 二进制 十六进制
0 0000 0000 0x00
167 1010 0111 0xA7
62 0011 1110 0x3E
188 1011 1100 0xBC
55 0011 0111 0x37
136 1000 1000 0x88
243 1111 0011 0xF3
82 0101 0010 0x52
172 1010 1100 0xAC
231 1110 0111 0xE7

*练习题2.4

A. 0x503c+0x0008=0x5044
B. 0x503c-0x0040=0x4f5c
C. 0x503c+0x0004=0x5040
D. 0X50ea-0x503c=0x00ae

更正:
对于B来说:0x503c-0x0040=0x4ffc,第3位应该是3+16-4,这里错误计算成了3+10-4
对于C来说: 0x503c+64=0x503c+0x0040=0x507c ,64的16进制计算错误

练习题2.5

A. 小端法:21    大端法:87
B. 小端法:21 43   大端法:87 65
C. 小端法:21 43 65 大端法:87 65 43

练习题2.6

A.整数:0000 0000 0011 0101 1001 0001 0100 0001 浮点数: 0100 1010 0101 0110 0100 0101 0000 0100
B.21
C.整数前面一部分不匹配,浮点数只在中间的部分匹配。

*练习题2.7

61 62 63 64 65 66
strlen函数不计算null字符

练习题2.8

运算 结果
a a a [01101001]
b b b [01010101]
∼ a \sim a a [10010110]
∼ b \sim b b [10101010]
a & b a\&b a&b [01000001]
a ∣ b a\mid b ab [01111101]
a ∧ b a^\land b ab [00111100]

*练习题2.9

A.
黑色RGB位向量[0 0 0],位向量的补是[1 1 1],对应白色,所以黑色的补是白色
蓝色RGB位向量[0 0 1],位向量的补是[1 1 0],对应黄色,所以蓝色的补是黄色
绿色RGB位向量[0 1 0],位向量的补是[1 0 1],对应红紫色,所以绿色的补是红紫色
蓝绿色RGB位向量[0 1 1],位向量的补是[1 0 0],对应红色,所以蓝绿色的补是红色
因为位向量 ∼ ( ∼ a ) = a \sim(\sim a)=a (a)=a,所以可得:
白色的补是黑色
黄色的补是蓝色
红紫色的补是绿色
红色的补是蓝绿色

B.
蓝色|绿色  =[0 0 1] | [0 1 0]=[0 1 1] =蓝绿色
黄色&蓝绿色=[1 1 0] & [0 1 1]=[1 1 1]=白色
红色^红紫色=[1 0 0] ^ [1 0 1]=[0 0 1]=蓝色

更正:
B中 黄色&蓝绿色=[1 1 0] & [0 1 1]=[0 1 0]=绿色 这里位运算结果错了。

练习题2.10

步骤 *x *y
初始 a b
第1步 a a^b
第2步 a ^ (a^b)=b a^b
第3步 b (a^b) ^ b=a

练习题2.11

A.first=last=k
B.当inplace_swap(k,k)时会导致

*k = *k ^ *k //*k此时为0
*k = *k ^ *k 
*k = *k ^ *k //*k执行第一行后一直为0

C.把for循环的结束条件中的等号去掉

练习题2.12

A.x=x&0xFF
B.x=(~x&0x00)&(x&0xFF)
C.x=x|0xFF
更正:
B 可以为 x=x^~0xFF

练习题2.13

int bool_or(int x, int y) {
   
	int result = bis(x,y);
	return result;
}

int bool_xor(int x, int y) {
   
	int result =  bis(bic(x,y),bic(y,x));
	return result;
}

练习题2.14

x=0110 0110
y=0011 1001

表达式 表达式
x & y 0x20 x && y 0x01
x | y 0x7F x || y 0x01
~x | ~y 0xDF !x || !y 0x00
x & !y 0x00 x && ~y 0x01

练习题2.15

!(x^y)

练习题2.16

x x<<3 x>>2(逻辑的) x>>2(算术的)
十六进制 二进制 二进制 十六进制 二进制 十六进制 二进制 十六进制
0xc3 1100 0011 0001 1000 0x18 0011 0000 0x30 1111 0000 0xF0
0x75 0111 0101 1010 1000 0xA8 0001 1101 0x1D 0001 1101 0x1D
0x87 1000 0111 0011 1000 0x38 0010 0001 0x21 1110 0001 0xE1
0x66 0110 0110 0011 0000 0x30 0001 1001 0x19 0001 1001 0x19

练习题2.17

x ⃗ \vec{x} x B 2 U 4 ( x ⃗ ) B2U_4(\vec{x}) B2U4(x ) B 2 T 4 ( x ⃗ ) B2T_4(\vec{x}) B2T4(x )
十六进制 二进制
0xE [1110] 2 3 + 2 2 + 2 1 = 14 2^3+2^2+2^1=14 23+22+21=14 − 2 3 + 2 2 + 2 1 = − 2 -2^3+2^2+2^1=-2 23+22+21=2
0x0 [0000] 0 0 0 0 0 0
0x5 [0101] 2 2 + 2 0 = 5 2^2+2^0=5 22+20=5 2 2 + 2 0 = 5 2^2+2^0=5 22+20=5
0x8 [1000] 2 3 = 8 2^3=8 23=8 − 2 3 = − 8 -2^3=-8 23=8
0xD [1101] 2 3 + 2 2 + 2 0 = 13 2^3+2^2+2^0=13 23+22+20=13 − 2 3 + 2 2 + 2 0 = − 3 -2^3+2^2+2^0=-3 23+22+20=3
0xF [1111] 2 3 + 2 2 + 2 1 + 2 0 = 15 2^3+2^2+2^1+2^0=15 23+22+21+20=15 − 2 3 + 2 2 + 2 1 + 2 0 = − 1 -2^3+2^2+2^1+2^0=-1 23+22+21+20=1

练习题2.18

A.736
B.-88
C.40
D.-48
E.120
F.136
G.504
H.192
I.-72

练习题2.19

x x x T 2 U 4 ( x ) T2U_4(x) T2U4(x)
-8 [1000]=8
-3 [1101]=13
-2 [1110]=14
-1 [1111]=15
0 [0000]=0
5 [0101]=5

练习题2.20

x x x T 2 U 4 ( x ) T2U_4(x) T2U4(x)
-8 T 2 U 4 ( − 8 ) = − 8 + 2 4 = 8 T2U_4(-8)=-8+2^4=8 T2U4(8)=8+24=8
-3 T 2 U 4 ( − 3 ) = − 3 + 2 4 = 13 T2U_4(-3)=-3+2^4=13 T2U4(3)=3+24=13
-2 T 2 U 4 ( − 2 ) = − 2 + 2 4 = 14 T2U_4(-2)=-2+2^4=14 T2U4(2)=2+24=14
-1 T 2 U 4 ( − 1 ) = − 1 + 2 4 = 15 T2U_4(-1)=-1+2^4=15 T2U4(1)=1+24=15
0 T 2 U 4 ( 0 ) = 0 T2U_4(0)=0 T2U4(0)=0
5 T 2 U 4 ( 5 ) = 5 T2U_4(5)=5 T2U4(5)=5

练习题2.21

表达式 类型 求值
-2147483647-1 == 2147483648U 无符号 1
-2147483647-1 <2147483647 有符号 1
-2147483647-1U < 2147483647 无符号 0
-2147483647-1 <-2147483647 有符号 1
-2147483647-1U <-2147483647 无符号 1

练习题2.22

A. B 2 T 4 ( [ 1011 ] ) = − x 4 − 1 2 4 − 1 + ∑ n = 0 4 − 2 x i 2 i = − 2 3 + 2 1 + 2 0 = − 5 B2T_4([1011])=-x_{4-1}2^{4-1}+\displaystyle\sum_{n=0}^{4-2}x_i2^i=-2^3+2^1+2^0=-5 B2T4([1011])=x41241+n=042xi2i=23+21+20=5
B. B 2 T 5 ( [ 11011 ] ) = − x 5 − 1 2 5 − 1 + ∑ n = 0 5 − 2 x i 2 i = − 2 4 + 2 3 + 2 1 + 2 0 = − 5 B2T_5([11011])=-x_{5-1}2^{5-1}+\displaystyle\sum_{n=0}^{5-2}x_i2^i=-2^4+2^3+2^1+2^0=-5 B2T5([11011])=x51251+n=052xi2i=24+23+21+20=5
C. B 2 T 6 ( [ 111011 ] ) = − x 6 − 1 2 6 − 1 + ∑ n = 0 6 − 2 x i 2 i = − 2 5 + 2 4 + 2 3 + 2 1 + 2 0 = − 5 B2T_6([111011])=-x_{6-1}2^{6-1}+\displaystyle\sum_{n=0}^{6-2}x_i2^i=-2^5+2^4+2^3+2^1+2^0=-5 B2T6([111011])=x61261+n=062xi2i=25+24+23+21+20=5

练习题2.23

A.

w fun1(w) fun2(w)
0x00000076 0x76 0x76
0x87654321 0x21 0x21
0x000000C9 0xC9 0xFFFFFFC9
0xEDCBA987 0x87 0xFFFFFF87

B.fun1从无符号数的最低有效位取1字节,高位皆置为0,然后转化为补码
fun2从无符号数的最低有效位取1字节,高位用根据第8位置为1或0,然后转化为补码

练习题2.24

十六进制 无符号 补码
原始值 截断值 原始值 截断值 原始值 截断值
0 0 0 0 0 0
2 2 2 2 2 2
9 1 9 1 -7 1
B 3 11 3 -5 3
F 7 15 7 -1 -1

练习题2.25

因为无符号数length=0时length-1的结果为 U M a x 32 UMax_{32} UMax32,第一次循环的比较条件变为了无符号数0<= U M a x 32 UMax_{32} UMax32,所以程序会访问一个长度为0数组的0号元素,导致出错。

练习题2.26

A.当字符串s比字符串t短时还结果会不正确
B.因为strlen函数返回无符号整数,当字符串s短于字符串t时,无符号整数相减仍大于0,导致函数会返回1。
C.将return strlen(s) - strlen(t) > 0;改为return (int)(strlen(s) - strlen(t)) > 0;
更正:
C可以为return strlen(s)>strlen(t)

练习题2.27

int uadd_ok(unsigned x,unsigned y){
   
	return x+y>=x;
}

练习题2.28

x − 4 u x -_4^ux 4ux
十六进制 十进制 十进制 十六进制
0 0 0 0
5 5 11 B
8 8 8 8
D 13 3 3
F 15 1 1

练习题2.29

x y x+y x + 5 t y x+_5^ty x+5ty 情况
[10100] [10001] [100101] [00101] 负溢出
[11000] [11000] [110000] [10000] 正常
[10111] [01000] [11111] [11111] 正常
[00010] [00101] [00111] [00111] 正常
[01100] [00100] [010000] [10000] 正溢出

练习题2.30

/* Determine whether arguments can be added without overflow */
int tadd_ok(int x,int y){
   
	int sum = x+y;
	int neg_over = x <  0 && y <  0 && sum >= 0;
	int pos_over = x >= 0 && y >= 0 && sum <  0;
	return !neg_over && !pos_over;
}

练习题2.31

当发生正溢出时, s u m = x + y − 2 32 sum=x+y-2^{32} sum=x+y232 。而 s u m − x = y − 2 32 sum-x=y-2^{32} sumx=y232。因为 y < 2 31 y<2^{31} y<231,所以 y − 2 32 < − 2 31 y-2^{32}<-2^{31} y232<231,即 s u m − x < − 2 31 sum-x<-2^{31} sumx<231。所以 s u m − x = s u m − x + 2 32 = y − 2 32 + 2 32 = y sum-x=sum-x+2^{32}=y-2^{32}+2^{32}=y sumx=sumx+232=y232+232=y,同理 s u m − y = x sum-y=x sumy=x。所以即使发生正溢出,该段代码也会返回真值。发生负溢出时也同理,所以本题代码无法生效。

练习题2.32

y = − 2 31 y=-2^{31} y=231时, − y = 2 31 -y=2^{31} y=231,发生正溢出 − y = 2 31 − 2 32 = − 2 31 -y=2^{31}-2^{32}=-2^{31} y=231232=231tadd_ok(x,-y)会在 x < 0 x<0 x<0判断为溢出,从而导致tsub_ok(x,y)判断为溢出,而事实上当 x < 0 , y = − 2 31 x<0,y=-2^{31} x

  • 7
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
### 回答1: 深入理解计算机系统(CSAPP)是由Randal E. Bryant和David R. O'Hallaron编写的经典计算机科学教材。该教材通过涵盖计算机体系结构、机器级别表示和程序执行的概念,帮助学生深入理解计算机系统的底层工作原理和运行机制。 深入理解计算机系统的练习题对于学生巩固并应用所学知识非常有帮助。这些练习题涵盖了计算机硬件、操作系统和编译器等多个领域,旨在培养学生解决实际问题和设计高性能软件的能力。 对于深入理解计算机系统的练习题,关键是通过实践进行学习。在解答练习题时,应根据课本提供的相关知识和工具,仔细阅读问题描述,并根据实际需求设计相应的解决方案。 在解答练习题时,需要多角度思考问题。首先,应准确理解题目要求,并设计合适的算法或代码来解决问题。其次,应考虑代码的正确性和效率,以及对系统性能的影响。此外,还要注意处理一些特殊情况和异常情况,避免出现潜在的错误或安全漏洞。 解答练习题的过程中,应注重查阅相关资料和参考优秀的解答。这可以帮助我们扩展对问题的理解,并学习他人的思路和解决方法。同时,还可以通过与同学和老师的讨论,共同探讨问题和学习经验。 总之,通过解答深入理解计算机系统的练习题,可以帮助学生巩固所学知识,同时培养解决实际问题和设计高性能软件的能力。这是一个学以致用的过程,可以加深对计算机系统运行机制和底层工作原理的理解。 ### 回答2: 理解计算机系统(CSAPP)是一本经典的计算机科学教材,通过深入研究计算机系统的各个方面,包括硬件、操作系统和编程环境,对于提高计算机科学专业知识与能力具有很大帮助。 练习题是CSAPP中的重要部分,通过练习题的完成,可以加深对计算机系统的理解,并将理论知识转化为实践能力。练习题的数量、难度逐渐递增,从简单的概念与基础问题到复杂的系统设计与实现。 在解答练习题时,首先需要对题目进行仔细阅读和理解,明确题目的要求和限制条件。然后,可以利用课堂讲解、教材内容、网络资源等进行查阅和学习相应的知识。同时,还可以参考课后习题解答等资料,了解一些常见的解题方法和思路。 在解答练习题时,可以利用计算机系统的工具和环境进行实际测试和验证。例如,可以使用调试器、编译器和模拟器等工具对程序或系统进行分析和测试。这样可以更加深入地理解问题的本质,并找到恰当的解决方法。 另外,解答练习题时还可以与同学、教师和网上社区进行交流和讨论。这样可以互相学习和交流解题思路,共同解决问题。还可以了解不同的解题方法和技巧,提高解题效率和质量。 练习题的解答过程可能会遇到一些困难和挑战,例如理论知识的不足、复杂问题的分析与解决。但是通过不断地思考和实践,相信可以逐渐提高解题能力,更好地理解计算机系统。 总之,深入理解计算机系统(CSAPP)练习题是提高计算机科学专业知识和能力的重要途径。通过仔细阅读和理解题目,查阅相关知识,利用计算机系统工具和环境进行实践,与他人进行交流和讨论,相信可以更好地理解计算机系统的各个方面,并将知识转化为实际能力。 ### 回答3: 《深入理解计算机系统(CSAPP)》是计算机科学领域的经典教材之一,对于深入理解计算机系统的原理、设计和实现起到了极大的帮助。在阅读这本书的过程中,书中的习题也是非常重要的一部分,通过做习题,我们可以更好地理解书中所讲的概念和思想。 CSAPP的习题涵盖了课本中各个节的内容,从基础的数据表示和处理、程序的机器级表示、优化技术、程序的并发与并行等方面进行了深入探讨。通过解答习题,我们可以对这些知识进行实践应用,巩固自己的理解,并培养自己的解决问题的思维方式。 在解答习题时,我们需要充分理解题目要求和条件,并从知识的角度进行分析。有些习题可能需要进行一些编程实践,我们可以通过编程实现来验证和测试我们的思路和解决方案。在解答问题时,我们还可以查阅一些参考资料和网上资源,充分利用互联网的学习资源。 在解答习题时,我们需要保持积极的思维和态度。可能会遇到一些困难和挑战,但是通过坚持和努力,我们可以克服这些困难,提高我们的解决问题的能力。同时,我们还可以通过与同学或者其他人进行讨论,相互分享解题经验和思路,从而更好地理解问题。 综上所述,通过深入理解计算机系统(CSAPP)的习题,我们可以进一步巩固和深化对计算机系统的理解。掌握这些知识,不仅可以提高我们在计算机领域的能力,还可以为我们未来的学习和职业发展奠定重要的基础。因此,认真对待CSAPP的习题,是我们在学习计算机系统知识中不可或缺的一部分。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

八云黧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值