1.背包问题
/*
题目描述:
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。1<=N<=20
第 i 件物品价值是 v[i],重量是 w[i]。
求解将哪些物品装入背包,可使这些物品的重量和不超过背包容量V,且总价值最大。
输出最大价值
*/
#include<iostream>
using namespace std;
const int maxn = 30;
int N, V, max_value = 0;
int weight[maxn], value[maxn];
//DFS--参数设置:index记录当前处理的物品编号;sumw和sumv分别记录当前总重量和总价值
void DFS(int index, int sumw, int sumv) {
//"死胡同",即递归出口
if (index == N) {
//已经对这N件物品都做了选或不选的决定,或者理解为,已经遍历了一条完整的路径
if (sumw <= V && sumv > max_value)
max_value = sumv; //更新最优路径的结果--即最大价值
return;
}
//"岔道口",选or不选
DFS(index + 1, sumw, sumv);//不选择index处的物品-->已经做了不选的决定,之后需要继续对下一件做选择-->index+1
DFS(index + 1, sumw + weight[index], sumv + value[index]);//选择index处的物品
}
int main() {
//获取数据
cin >> N >> V;
for (int i = 0; i < N; i++)
cin >> weight[i];
for (int i = 0; i < N; i++)
cin >> value[i];
//调用DFS
DFS(0, 0, 0);
cout << max_value << endl;
return 0;
}