化归思想的运用
原题:摆花
题目描述
小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。
试编程计算,一共有多少种不同的摆花方案。
输入输出格式
输入格式:
第一行包含两个正整数n和m,中间用一个空格隔开。
第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1、a2、……an。
输出格式:
输出只有一行,一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对1000007取模的结果。
输入输出样例
输入样例#1:
2 4
3 2
输出样例#1:
2
说明
【数据范围】
对于20%数据,有0<n≤8,0<m≤8,0≤ai≤8;
对于50%数据,有0<n≤20,0<m≤20,0≤ai≤20;
对于100%数据,有0<n≤100,0<m≤100,0≤ai≤100。
NOIP 2012 普及组 第三题
更改后:
划分硬盘分区
题目描述
小H花10000元买了一台超高低配置的电脑,然而电脑上连分区都没划分,于是,小H准备开始依据《操作员手册》第三篇《电脑配置(10000元机器)》划分分区。
这本书说:这台机器需要被划分成n个分区,其中可以有分区是空的(这并不完全等于没划分)。
因为电脑的奇奇怪怪的问题,所以第i个分区的大小只能是0和a[i]之间的整数
这台电脑的内存为m(n个分区的大小的和为m),小H想知道有多少种划分方案。
结果对1000007取模。
输入
n m
a[i]..a[n]
输出
方案数 mod 1000007
样例输入
2 4
3 2
样例输出
2
提示
方案1:第一个盘大小为2,第二个盘大小为2
方案2:第一个盘大小为3,第二个盘大小为1
0<n,m<=100
0<=a[i]<=100
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,a[110],i,d[110][110];
int dfs(int x,int y)
{
int i,s=0;
if(y<0)
return 0;
if(d[x][y]!=0)
return d[x][y];
if(x==1)
{
if(y>=0 && y<=a[x])
return 1;
return 0;
}
for(i=0;i<=a[x];i++)
{
if(y>=i)
{
s+=dfs(x-1,y-i)%1000007;
s%=1000007;
}
}
return d[x][y]=s;
}
int main(){
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
printf("%d",dfs(n,m));
return 0;
}