摆花

化归思想的运用

原题:摆花

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入输出格式

输入格式:

第一行包含两个正整数n和m,中间用一个空格隔开。

第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1、a2、……an。

输出格式:

输出只有一行,一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对1000007取模的结果。

输入输出样例

输入样例#1:

2 4
3 2

输出样例#1:

2

说明

【数据范围】

对于20%数据,有0<n≤8,0<m≤8,0≤ai≤8;

对于50%数据,有0<n≤20,0<m≤20,0≤ai≤20;

对于100%数据,有0<n≤100,0<m≤100,0≤ai≤100。

NOIP 2012 普及组 第三题

 

更改后:

划分硬盘分区

题目描述

小H花10000元买了一台超高低配置的电脑,然而电脑上连分区都没划分,于是,小H准备开始依据《操作员手册》第三篇《电脑配置(10000元机器)》划分分区。

这本书说:这台机器需要被划分成n个分区,其中可以有分区是空的(这并不完全等于没划分)。

因为电脑的奇奇怪怪的问题,所以第i个分区的大小只能是0和a[i]之间的整数

这台电脑的内存为m(n个分区的大小的和为m),小H想知道有多少种划分方案。

结果对1000007取模。

输入

n m

a[i]..a[n]

输出

方案数 mod 1000007

样例输入

2 4
3 2

样例输出

2

提示


方案1:第一个盘大小为2,第二个盘大小为2


方案2:第一个盘大小为3,第二个盘大小为1


0<n,m<=100

0<=a[i]<=100

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,a[110],i,d[110][110];
int dfs(int x,int y)
{
    int i,s=0;
    if(y<0)
        return 0;
    if(d[x][y]!=0)
        return d[x][y];
    if(x==1)
    {
        if(y>=0 && y<=a[x])
            return 1;
        return 0;
    }
    for(i=0;i<=a[x];i++)
    {
        if(y>=i) 
        {
            s+=dfs(x-1,y-i)%1000007;
            s%=1000007;
        }
    }
    return d[x][y]=s;
}
int main(){
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++)
        scanf("%d",&a[i]);
    printf("%d",dfs(n,m));
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值