在模式识别领域中,最近邻居法(KNN算法,又译K-近邻算法)是将在特征空间中最接近的训练样本进行分类的方法。
最近邻居法采用向量空间模型来分类,概念为相同类别的案例,彼此的相似度高,而可以借由计算与已知类别案例之相似度,来评估未知类别案例可能的分类。
摘自:维基百科
举个例子,手写数字识别,假设0-9的数字可以用特征向量(a,b,c,...)表示,那么现在有一个数字X,它的特征向量可以表示为(x,y,z,...),那么可以用特征向量之间的距离(欧氏距离)来表示它们的相似度,即d=sqrt( (x-a)^2+(y-b)^2+(z-c)^2+... ),d越小则表示X与哪个数字的的距离越近,即X是该数字的可能性越大! 在这里(a,b,c,...)可以被看作是训练集(有很多个训练集,比如10000个,0-9分别各有1000个&