- 原题链接🔗:爬楼梯
- 难度:简单⭐️
题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
题解
- 解题思路:
LeetCode 上的 “爬楼梯” 问题是一个经典的动态规划问题,通常有两种解法:递归和动态规划。
递归方法
递归方法基于这样一个事实:到达第i
阶楼梯的方法数是到达第i-1
阶和第i-2
阶楼梯的方法数之和。这是因为,要到达第i
阶,你最后一步要么是从第i-1
阶上来的,要么是从第i-2
阶上来的。
递归的伪代码如下:
function climbStairs(n):
if n == 1:
return 1
if n == 2:
return 2
return climbStairs(n - 1) + climbStairs(n - 2)动态规划方法
动态规划方法是对递归方法的优化,避免了重复计算相同的子问题。我们使用一个数组dp
来存储到达每一阶楼梯的方法数,其中dp[i]
表示到达第i
阶的方法数。
动态规划的伪代码如下:
function climbStairs(n):
if n == 1:
return 1
dp = new int[n + 1]
dp[1] = 1
dp[2] = 2
for i from 3 to n:
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]空间优化的动态规划
由于dp[i]
只依赖于dp[i - 1]
和dp[i - 2]
,我们不需要存储整个数组,只需要两个变量来存储这两个状态即可,从而将空间复杂度降低到 O(1)。
空间优化的动态规划伪代码如下:
function climbStairs(n):
if n == 1:
return 1
a, b = 1, 2
for i from 3 to n:
temp = a + b
a = b
b = temp
return b总结
- 递归方法直观但效率低,因为它有很多重复计算。
- 动态规划方法通过存储中间结果避免了重复计算,提高了效率。
- 空间优化的动态规划进一步减少了空间的使用,使得算法更加高效。
- c++ demo:
#include <iostream>
#include <vector>
class Solution {
public:
// 递归方法
int climbStairsRecursive(int n) {
if (n <= 2) return n;
return climbStairsRecursive(n - 1) + climbStairsRecursive(n - 2);
}
// 动态规划方法
int climbStairsDP(int n) {
std::vector<int> dp(n + 1);
if (n <= 2) return n;
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; ++i) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
// 空间优化的动态规划方法
int climbStairsOptimized(int n) {
if (n == 1) return 1;
int a = 1, b = 2, temp;
for (int i = 3; i <= n; ++i) {
temp = a + b;
a = b;
b = temp;
}
return b;
}
};
int main() {
Solution solution;
int n = 5; // 测试爬5阶楼梯
// 测试递归方法
std::cout << "Using Recursive Method: " << solution.climbStairsRecursive(n) << std::endl;
// 测试动态规划方法
std::cout << "Using DP Method: " << solution.climbStairsDP(n) << std::endl;
// 测试空间优化的动态规划方法
std::cout << "Using Optimized DP Method: " << solution.climbStairsOptimized(n) << std::endl;
return 0;
}
- 输出结果:
Using Recursive Method: 8
Using DP Method: 8
Using Optimized DP Method: 8
- 代码仓库地址:climbStairs