LeetCode 算法:爬楼梯 c++

  • 原题链接🔗:爬楼梯
  • 难度:简单⭐️

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

提示:

1 <= n <= 45

题解

  1. 解题思路:

LeetCode 上的 “爬楼梯” 问题是一个经典的动态规划问题,通常有两种解法:递归和动态规划。

  1. 递归方法
    递归方法基于这样一个事实:到达第 i 阶楼梯的方法数是到达第 i-1 阶和第 i-2 阶楼梯的方法数之和。这是因为,要到达第 i 阶,你最后一步要么是从第 i-1 阶上来的,要么是从第 i-2 阶上来的。
    递归的伪代码如下:
    function climbStairs(n):
    if n == 1:
    return 1
    if n == 2:
    return 2
    return climbStairs(n - 1) + climbStairs(n - 2)

  2. 动态规划方法
    动态规划方法是对递归方法的优化,避免了重复计算相同的子问题。我们使用一个数组 dp 来存储到达每一阶楼梯的方法数,其中 dp[i] 表示到达第 i 阶的方法数。
    动态规划的伪代码如下:
    function climbStairs(n):
    if n == 1:
    return 1
    dp = new int[n + 1]
    dp[1] = 1
    dp[2] = 2
    for i from 3 to n:
    dp[i] = dp[i - 1] + dp[i - 2]
    return dp[n]

  3. 空间优化的动态规划
    由于 dp[i] 只依赖于 dp[i - 1]dp[i - 2],我们不需要存储整个数组,只需要两个变量来存储这两个状态即可,从而将空间复杂度降低到 O(1)。
    空间优化的动态规划伪代码如下:
    function climbStairs(n):
    if n == 1:
    return 1
    a, b = 1, 2
    for i from 3 to n:
    temp = a + b
    a = b
    b = temp
    return b

  4. 总结

  • 递归方法直观但效率低,因为它有很多重复计算。
  • 动态规划方法通过存储中间结果避免了重复计算,提高了效率。
  • 空间优化的动态规划进一步减少了空间的使用,使得算法更加高效。
  1. c++ demo:
#include <iostream>
#include <vector>

class Solution {
public:
    // 递归方法
    int climbStairsRecursive(int n) {
        if (n <= 2) return n;
        return climbStairsRecursive(n - 1) + climbStairsRecursive(n - 2);
    }

    // 动态规划方法
    int climbStairsDP(int n) {
        std::vector<int> dp(n + 1);
        if (n <= 2) return n;
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; ++i) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }

    // 空间优化的动态规划方法
    int climbStairsOptimized(int n) {
        if (n == 1) return 1;
        int a = 1, b = 2, temp;
        for (int i = 3; i <= n; ++i) {
            temp = a + b;
            a = b;
            b = temp;
        }
        return b;
    }
};

int main() {
    Solution solution;
    int n = 5; // 测试爬5阶楼梯

    // 测试递归方法
    std::cout << "Using Recursive Method: " << solution.climbStairsRecursive(n) << std::endl;

    // 测试动态规划方法
    std::cout << "Using DP Method: " << solution.climbStairsDP(n) << std::endl;

    // 测试空间优化的动态规划方法
    std::cout << "Using Optimized DP Method: " << solution.climbStairsOptimized(n) << std::endl;

    return 0;
}
  • 输出结果:

Using Recursive Method: 8
Using DP Method: 8
Using Optimized DP Method: 8

  1. 代码仓库地址:climbStairs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值