CIFAR10 数据集介绍并转化为图片

CIFAR10数据集

  1. CIFAR-10数据集是一个广泛使用的机器学习数据集,它包含10个类别的 60000 张32x32的彩色图像。每个类别有6000张图像,其中50000张用于训练,1000 张用于测试。这些类别包括:

    • 飞机(airplane)
    • 汽车(automobile)
    • 鸟类(bird)
    • 猫(cat)
    • 鹿(deer)
    • 狗(dog)
    • 蛙类(frog)
    • 马(horse)
    • 船(ship)
    • 卡车(truck)
  2. CIFAR-10数据集被广泛用于图像识别和计算机视觉任务,尤其是在卷积神经网络(CNN)的研究中。它是一个相对较小的数据集,适合用来测试算法的可行性,但由于其图像尺寸较小和类别数量有限,它通常不用于大规模的商业应用。

  3. 官网https://www.cs.toronto.edu/~kriz/cifar.html

  4. 资源版本:Python版本、MATLAB版本、二进制版本
    在这里插入图片描述

  5. 示例
    在这里插入图片描述

  6. CIFAR-100 数据集:作为CIFAR-10的扩展版,CIFAR-100数据集是一个用于机器学习和计算机视觉任务的图像分类数据集,它包含100个类别的60,000张32x32像素的彩色图像。每个类别有600张图像,其中500张用于训练,100张用于测试。这100个类别被进一步分为20个超类别(superclasses),每个超类别包含5个类别。CIFAR-100数据集中的每个图像都有一个“细”标签(fine label)和一个“粗”标签(coarse label),分别对应于图像的具体类别和所属的超类别。
    在这里插入图片描述

数据集转化为图片

  1. CIFAR-10数据集下载后不是图片格式,而是以二进制文件的形式存储的。这些二进制文件包含了图像数据和对应的标签信息。每个二进制文件中,第一个字节是标签,后面的数据是图像的像素值,图像数据按照红色、绿色、蓝色通道的顺序排列,每个通道有32x32个像素值。
  2. 官网提供了将二进制转换为图片的方法:Python3实现
def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
  1. 完整Python 代码:
import os
import numpy as np
from imageio import imsave
import pickle

# 定义一个函数来读取并解析cifar-10的pickle文件
def unpickle(file):
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

# 定义CIFAR-10数据集的路径
cifar10_path = 'E://datasets//cifar-10-batches-py'  # 替换为你的CIFAR-10数据集的实际路径

# 确保路径存在
if not os.path.exists(cifar10_path):
    print("CIFAR-10数据集路径不存在,请检查路径。")
else:
    # 读取meta信息
    meta = unpickle(os.path.join(cifar10_path, 'batches.meta'))
    label_name = meta[b'label_names']

    # 为每个类别创建一个文件夹
    for i in range(len(label_name)):
        path = os.path.join('your_path_to_save_images', label_name[i].decode())  # 替换为你想要保存图片的路径
        if not os.path.exists(path):
            os.makedirs(path)

    # 遍历每个数据批次文件
    for i in range(1, 6):
        content = unpickle(os.path.join(cifar10_path, 'data_batch_' + str(i)))
        for j in range(10000):  # 每个批次包含10000张图片
            img = content[b'data'][j]
            img = img.reshape(3, 32, 32)  # 转换为3x32x32
            img = img.transpose(1, 2, 0)  # 转置为32x32x3
            img_name = os.path.join('your_path_to_save_images', label_name[content[b'labels'][j]].decode(), 'batch_' + str(i) + '_num_' + str(j) + '.jpg')
            imsave(img_name, img)  # 保存图片
  1. 下载下来的数据集:
    在这里插入图片描述

  2. 转化后图片集:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值