使用Matlab实现:Jacobi、Gauss-Seidel迭代

使用Matlab实现:Jacobi、Gauss-Seidel迭代

例题

方程组 { 5 x 1 + 2 x 2 + x 3 = − 12 − x 1 + 4 x 2 + 2 x 3 = 20 2 x 1 − 3 x 2 + 10 x 3 = 3 \begin{cases} 5x_1 + 2x_2 + x_3 = -12\\ -x_1 + 4x_2 + 2x_3 = 20\\ 2x_1 - 3x_2 + 10x_3 = 3\\ \end{cases} 5x1+2x2+x3=12x1+4x2+2x3=202x13x2+10x3=3 求解,当 m a x ∣ x i ( k + 1 ) − x i ( k ) ∣ ≤ 1 0 − 5 max|x_i^{(k + 1)} - x_i^{(k)}| \leq 10^{-5} maxxi(k+1)xi(k)105 时候迭代终止。

以下解答过程,上标表示迭代次数,下标表示序号。

Jacobi迭代

定义变量:
D = d i a g ( a 11 , a 22 , . . . , a n n ) , L = [ 0 − a 21 0 . . . − a i 1 . . . − a i , i − 1 0 . . . − a n 1 . . . − a n , i − 1 . . . − a n , n − 1 0 ] , U = [ 0 − a 12 . . . − a 1 , i . . . − a 1 , n . . . 0 − a i − 1 , i . . . − a i − 1 , n . . . 0 − a n − 1 , n . . . 0 ] D = diag(a_{11}, a_{22}, ..., a_{nn}),\\ L = \left[\begin{array}{cccccc} 0\\ -a_{21} & 0\\ ...\\ -a_{i1} & ... & -a_{i,i-1} & 0\\ ...\\ -a_{n1} & ... & -a_{n,i-1} & ... & -a_{n,n-1} & 0\\ \end{array}\right],\\ U = \left[\begin{array}{cccccc} 0 &-a_{12} & ... & -a_{1,i} & ... & -a_{1,n}\\ ...\\ & & 0 & -a_{i-1,i} & ... & -a_{i-1,n}\\ ...\\ & & & & 0 & -a_{n-1,n}\\ ...\\ & & & & & 0\\ \end{array}\right] D=diag(a11,a22,...,ann),L=0a21...ai1...an10......ai,i1an,i10...an,n10,U=0.........a12...0a1,iai1,i......0a1,nai1,nan1,n0

其矩阵迭代形式为:
x ( k + 1 ) = B J ⋅ x ( k ) + f J B J = D − 1 ⋅ ( L + U ) , f J = D − 1 ⋅ b x^{(k+1)} = B_J \cdot x^{(k)} + f_J\\ B_J = D^{-1} \cdot (L + U), \quad f_J = D^{-1} \cdot b x(k+1)=BJx(k)+fJBJ=D1(L+U),fJ=D1b

写出分量形式:

{ x 1 ( k + 1 ) = 1 5 ( − 12 − 2 x 2 ( k ) − x 3 ( k ) ) x 2 ( k + 1 ) = 1 4 ( 20 + x 1 ( k ) − 2 x 3 ( k ) ) x 3 ( k + 1 ) = 1 10 ( 3 − 2 x 1 ( k ) + 3 x 2 ( k ) ) \begin{cases} x_1^{(k + 1)} = \frac15 (-12 - 2 x_2^{(k)} - x_3^{(k)} )\\ x_2^{(k + 1)} = \frac14 (20 + x_1^{(k)} - 2x_3^{(k)} )\\ x_3^{(k + 1)} = \frac1{10} (3 - 2 x_1^{(k)} + 3x_2^{(k)} )\\ \end{cases} x1(k+1)=51(122x2(k)x3(k))x2(k+1)=41(20+x1(k)2x3(k))x3(k+1)=101(32x1(k)+3x2(k))

写成矩阵形式:

[ x 1 ( k + 1 ) x 2 ( k + 1 ) x 3 ( k + 1 ) ] = [ 0 − 0.4 − 0.2 0.25 0 − 0.5 − 0.2 0.3 0 ] ⋅ [ x 1 ( k ) x 2 ( k ) x 3 ( k ) ] + [ − 2.4 5 0.3 ] \left[\begin{array}{c} x_1^{(k + 1)}\\ x_2^{(k + 1)}\\ x_3^{(k + 1)}\\ \end{array}\right] = \left[\begin{array}{cccc} 0 & -0.4 & -0.2\\ 0.25 & 0 & -0.5\\ -0.2 & 0.3 & 0\\ \end{array}\right] \cdot \left[\begin{array}{c} x_1^{(k)}\\ x_2^{(k)}\\ x_3^{(k)}\\ \end{array}\right] + \left[\begin{array}{c} -2.4\\ 5\\ 0.3\\ \end{array}\right] x1(k+1)x2(k+1)x3(k+1)=00.250.20.400.30.20.50x1(k)x2(k)x3(k)+2.450.3

取初始向量: x 0 = ( 0 , 0 , 0 ) T x^0 = (0, 0, 0)^T x0=(0,0,0)T,依次按照上式进行迭代。使用Matlab进行编程求解。

a=[0,-0.4,-0.2;0.25,0,-0.5;-0.2,0.3,0];
b = [-2.4;5;0.3];
x = [0;0;0];
xx = a * x + b;
i = 0;
while norm(x - xx, inf) >= 1e-5
	x = xx;
	xx = a * x + b;
	i = i +1;
end

以上代码,最终 x = x i , x x = x ( i + 1 ) x = x^{i}, xx = x^{(i + 1)} x=xi,xx=x(i+1) ,最终迭代次数位 i + 1 i + 1 i+1 次,如果你需要看到更长的小数位置,可以使用以下Matlab代码,表示使用15位浮点或定点数。

format long g

运行结果为:
在这里插入图片描述

即精确解为 x = ( − 4 , 3 , 2 ) T x = (-4,3,2)^T x=(4,3,2)T

Gauss-Seidel迭代

其矩阵迭代形式为:
x ( k + 1 ) = B G ⋅ x ( k ) + f G B G = ( D − L ) − 1 ⋅ U , f G = ( D − L ) − 1 ⋅ b x^{(k+1)} = B_G \cdot x^{(k)} + f_G\\ B_G = (D - L) ^{-1} \cdot U, \quad f_G = (D - L) ^{-1} \cdot b x(k+1)=BGx(k)+fGBG=(DL)1U,fG=(DL)1b

使用Matlab编程求解:

d = [5,0,0;0,4,0;0,0,10];
l = [0,0,0;1,0,0;-2,3,0];
u = [0,-2,-1;0,0,-2;0,0,0];
b = [-12;20;3];
t = inv(d - l);
bg = t * u;
fg = t * b;
x = [0;0;0];
xx = [-2.4;4.4;2.1];
i = 0;
while norm(x - xx, inf) >= 1e-5
	x = xx;
	xx = bg * x + fg;
	i = i +1;
end

运行结果为:
在这里插入图片描述

同样求得精确解为 x = ( − 4 , 3 , 2 ) T x = (-4,3,2)^T x=(4,3,2)T

  • 16
    点赞
  • 100
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值