矩阵的Jordan分解实例

矩阵的Jordan分解:标准型 + 变换矩阵

〇、题目

题目来自《计算机科学计算》第二版,编者张宏伟,金光日,施吉林,董波。书P86第12题。

求矩阵 A = [ 4 − 1 − 1 0 4 0 − 2 0 0 0 2 0 0 0 6 1 ] A= \left[\begin{array}{cccc} 4 & -1 & -1 & 0\\ 4 & 0 & -2 & 0\\ 0 & 0 & 2 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] A=4400100012260001 的Jordan分解。

一、求出其Jordan标准型

计算 d e t ( λ I − A ) = ∣ λ − 4 1 1 0 − 4 λ 2 0 0 0 λ − 2 0 0 0 − 6 λ − 1 ∣ det(\lambda I - A) = \left|\begin{array}{cccc} \lambda - 4 & 1 & 1 & 0\\ -4 & \lambda & 2 & 0\\ 0 & 0 & \lambda - 2 & 0\\ 0 & 0 & -6 & \lambda - 1\\ \end{array}\right| det(λIA)=λ44001λ0012λ26000λ1

解得特征值为 λ 1 = 1 \lambda _1 = 1 λ1=1(一重代数重数), λ 2 = 2 \lambda _2 = 2 λ2=2(三重代数重数、阶数)。

计算 r a n k ( λ 2 I − A ) = 2 rank(\lambda _2 I - A) = 2 rank(λ2IA)=2,得到 λ 2 \lambda _2 λ2的几何重数为2,即其Jordan块数为2,由于阶数为3,可以得到其两个Jordan块必然为 1 + 2 1 + 2 1+2的格式。
可得Jordan标准型为: J = [ 1 0 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right] J=1000020000200012

二、求其变换矩阵T

由定义 A ⋅ ( T 1 , T 2 , T 3 , T 4 ) = ( T 1 , T 2 , T 3 , T 4 ) ⋅ J A \cdot (T_1, T_2, T_3, T_4) = (T_1, T_2, T_3, T_4) \cdot J A(T1,T2,T3,T4)=(T1,T2,T3,T4)J

二、一、第一个特征值

以下求解,以上标表示块序号,下标表示块内序号。

对于 λ 1 = 1 \lambda _1 = 1 λ1=1,求其线性无关的特征向量。
A ⋅ t 1 = λ 1 ⋅ t 1 A \cdot t^1 = \lambda _1 \cdot t^1 At1=λ1t1,解的一个向量为 t 1 = ( 0 , 0 , 0 , 1 ) T t^1 = (0, 0, 0, 1)^T t1=(0,0,0,1)T,由于其为一重几何重数,可以直接作为Jordan链首。

二、二、第二个特征值

同理,解方程 ( A − λ 2 I ) ⋅ t 2 = 0 (A - \lambda _2I) \cdot t^2 = 0 (Aλ2I)t2=0

[ 2 − 1 − 1 0 4 − 2 − 2 0 0 0 0 0 0 0 6 1 ] ⋅ t 2 = 0 \left[\begin{array}{cccc} 2 & -1 & -1 & 0\\ 4 & -2 & -2 & 0\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 \end{array}\right] \cdot t^2 = 0 2400120012060001t2=0

解得: t 1 3 = t 1 2 = ( 1 , 1 , 1 , 6 ) T , t 2 3 = t 2 2 = ( 0 , 0 , 1 , 6 ) T t^3_1 = t^2_1 = (1, 1, 1, 6)^T,t^3_2 = t^2_2 = (0, 0, 1, 6)^T t13=t12=(1,1,1,6)Tt23=t22=(0,0,1,6)T

前面已知 λ 2 = 2 \lambda _2 = 2 λ2=2分为两块,一块阶数(链长)为1,一块阶数为2。
这里可以直接得到阶数为1得链首, t 2 = ( 1 , 1 , 1 , 6 ) T t^2 = (1, 1, 1, 6)^T t2=(1,1,1,6)T

对于链长为2的链,为了保证一定可以由链首推出第二环,即以下方程有解。 ( y 为 链 首 t 1 3 , z 为 第 二 环 t 2 3 ) (y为链首t^3_1,z为第二环t^3_2) (yt13zt23)
( A − λ 2 I ) ⋅ z = y ( A - \lambda _2 I ) \cdot z = y (Aλ2I)z=y

y = k 1 ⋅ t 1 3 + k 2 ⋅ t 2 3 = ( k 1 + k 2 , 2 k 1 − k 2 , k 2 , 6 k 2 ) T y = k_1\cdot t^3_1 + k_2\cdot t^3_2 = (k_1 + k_2, 2k_1 - k_2, k_2, 6k_2)^T y=k1t13+k2t23=(k1+k2,2k1k2,k2,6k2)T

其有解的条件为 r ( A − λ 2 I ) = r (   ( A − λ 2 I )   ∣ y ) r( A - \lambda _2 I ) = r( \space ( A - \lambda _2 I ) \space | y ) r(Aλ2I)=r( (Aλ2I) y)

可求得 k 2 = 0 , k 1 = 1 k_2 = 0, k_1 = 1 k2=0,k1=1,即 y = ( 1 , 2 , 0 , 0 ) T y = (1, 2, 0, 0)^T y=(1,2,0,0)T,代入原方程,可以得到 z = ( 1 , 1 , 0 , 0 ) T z = (1, 1, 0, 0)^T z=(1,1,0,0)T

综合得到其变换矩阵为: T = [ 0 1 1 1 0 1 2 1 0 1 0 0 1 6 0 0 ] T= \left[\begin{array}{cccc} 0 & 1 & 1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 1 & 0 & 0 \\ 1 & 6 & 0 & 0 \end{array}\right] T=0001111612001100

三、科学验算

使用在线计算器云算子,验证 A = T J T − 1 A = TJT^{-1} A=TJT1

验算正确,以下为其 T − 1 T^{-1} T1 值。

T − 1 = [ 0 0 − 6 1 0 0 1 0 − 1 1 0 0 2 − 1 − 1 0 ] T^{-1} =\left[\begin{array}{cccc} 0 & 0 & -6 & 1\\ 0 & 0 & 1 & 0\\ -1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right] T1=0012001161011000

  • 15
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值