LOJ #6277. 数列分块入门 1

本文深入探讨了分块数据结构的原理与应用,通过将序列分割成多个块,实现区间修改与单点查询的高效处理。文章详细解释了分块算法的实现细节,包括如何划分块、更新操作以及处理边界问题的技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:传送门
单点查询区间修改

分块算一种数据结构?
不知道
但是数据结构能做的题基本都能做
就是效率的问题
根号和log怎么比

第一道分块
分块的思想就是对整个序列分成若干块
每次操作只修改每整个块
对于两端块外的元素暴力修改
因为它们每端的长度不会超过一个块
思想很好懂
分块需要注意的就是边界问题
+1或-1漏一个就很麻烦了

/**
 * @Date:   2019-03-16T08:02:47+08:00
 * @Last modified time: 2019-03-16T08:02:48+08:00
 */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <complex>
#include <algorithm>
#include <climits>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define A 1000010
#define B 2010

using namespace std;
typedef long long ll;
int n, m, bl[A], f[A], se[A], a, b, c, opt;
void update(int a, int b, int c) {
    for (int i = a; i <= min(b, bl[a] * m); i++) se[i] += c; //左端的不完整块
    if (bl[a] != bl[b])
        for (int i = (bl[b] - 1) * m + 1; i <= b; i++) se[i] += c; //右端的不完整块
    for (int i = bl[a] + 1; i <= bl[b] - 1; i++) f[i] += c; //修改整个块
}

int main(int argc, char const *argv[]) {
    scanf("%d", &n); m = sqrt(n);
    for (int i = 1; i <= n; i++) scanf("%d", &se[i]);
    for (int i = 1; i <= n; i++) bl[i] = (i - 1) / m + 1;
    for (int i = 1; i <= n; i++) {
        scanf("%d%d%d%d", &opt, &a, &b, &c);
        if (!opt) update(a, b, c);
        else printf("%d\n", f[bl[b]] + se[b]); //这个点的原序列的值加上整块加的值
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

良月澪二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值