什么是欧拉筛??

欧拉筛(Euler's Sieve),又称线性筛法或欧拉线性筛,是一种高效筛选素数的方法。它的核心思想是从小到大遍历每个数,同时标记其倍数为合数,但每个合数只被其最小的质因数标记一次,从而避免了重复标记,实现了线性时间复杂度的素数筛选。

以下是一个使用 Python 实现的欧拉筛的例子:

def euler_sieve(n):  
    # 初始化标记数组,默认所有数都是素数(未标记)  
    is_prime = [True] * (n + 1)  
    is_prime[0] = is_prime[1] = False  
    primes = []  # 用于存储素数  
  
    for i in range(2, n + 1):  
        if is_prime[i]:  
            # i 是素数,将其加入素数列表  
            primes.append(i)  
            # 标记 i 的倍数为合数  
            for j in range(i * i, n + 1, i):  
                is_prime[j] = False  
  
    return primes  
  
# 示例:找出 100 以内的素数  
primes_up_to_100 = euler_sieve(100)  
print(primes_up_to_100)

在这段代码中,euler_sieve 函数接受一个整数 n 作为参数,返回小于等于 n 的所有素数的列表。函数内部首先创建了一个布尔数组 is_prime,用于标记每个数是否为素数。然后,函数从 2 开始遍历到 n,对于每个遍历到的数 i,如果 is_prime[i] 为真,则将 i 加入到素数列表中,并标记 i 的所有倍数为合数(从 i * i 开始,因为比 i 小的数的倍数已经被之前的素数标记过了)。

最终,函数返回素数列表。在这个例子中,我们调用 euler_sieve(100) 来找出 100 以内的所有素数,并打印结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田晖扬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值