毕业设计-人脸表情识别系统、人工智能

人脸表情识别系统

1. 前言

    在这个人工智能成为超级大热门的时代,人脸表情识别已成为其中的一项研究热点,而卷积神经网络、深度信念网络和多层感知器等相关算法在人脸面部表情识别领域的运用最为广泛。面部的表情中包含了太多的信息,轻微的表情变化都会反映出人心理的变化,可想而知如果机器能敏锐地识别人脸中表达的情感该是多么令人兴奋的事。

    学习和研究了挺久的深度学习,偶然看到IEEE上面一篇质量很高的文章,里面介绍的是利用深度神经网络实现的面部表情识别,研读下来让我深受启发。于是自己动手做了这个项目,如今SCI论文已投稿,这里特此将前期工作作个总结,希望能给类似工作的朋友带来一点帮助。由于论文尚未公开,这里使用的是已有的模型——如今CNN的主流框架之mini_XCEPTION,该模型性能也已是不错的了,论文中改进的更高性能模型尚不便给出,后面会分享给大家,敬请关注。


2. 表情识别数据集

    目前,现有的公开的人脸表情数据集比较少,并且数量级比较小。比较有名的广泛用于人脸表情识别系统的数据集Extended Cohn-Kanada (CK+)是由P.Lucy收集的。CK+数据集包含123 个对象的327 个被标记的表情图片序列,共分为正常、生气、蔑视、厌恶、恐惧、开心和伤心七种表情。对于每一个图片序列,只有最后一帧被提供了表情标签,所以共有327 个图像被标记。为了增加数据,我们把每个视频序列的最后三帧图像作为训练样本。这样CK+数据总共被标记的有981 张图片。这个数据库是人脸表情识别中比较流行的一个数据库,很多文章都会用到这个数据做测试,可通过下面的链接下载。
官网链接:The Extended Cohn-Kanade Dataset(CK+)
网盘链接:百度网盘下载(提取码:8r15)

图片展示

    KaggleKaggle人脸表情分析比赛提供的一个数据集。该数据集含28709 张训练样本,3859 张验证数据集和3859 张测试样本,共35887 张包含生气、厌恶、恐惧、高兴、悲伤、惊讶和正常七种类别的图像,图像分辨率为48×48。该数据集中的图像大都在平面和非平面上有旋转,并且很多图像都有手、头发和围巾等的遮挡物的遮挡。该数据库是2013年Kaggle比赛的数据,由于这个数据库大多是从网络爬虫下载的,存在一定的误差性。这个数据库的人为准确率是65%±5%
官网链接:FER2013
网盘链接:百度网盘下载(提取码:t7xj)

图片展示

    由于FER2013数据集数据更加齐全,同时更加符合实际生活的场景,所以这里主要选取FER2013训练和测试模型。为了防止网络过快地过拟合,可以人为的做一些图像变换,例如翻转,旋转,切割等。上述操作称为数据增强。数据操作还有另一大好处是扩大数据库的数据量,使得训练的网络鲁棒性更强。下载数据集保存在fer2013的文件夹下,为了对数据集进行处理,采用如下代码载入和进行图片预处理:

import pandas as pd
import cv2
import numpy as np

dataset_path = 'fer2013/fer2013/fer2013.csv' # 文件保存位置
image_size=(48,48) # 图片大小

# 载入数据
def load_fer2013():
        data = pd.read_csv(dataset_path)
        pixels = data['pixels'].tolist()
        width, height = 48, 48
        faces = []
        for pixel_sequence in pixels:
            face = [int(pixel) for pixel in pixel_sequence.split(' ')]
            face = np.asarray(face).reshape(width, height)
            face = cv2.resize(face.astype('uint8'),image_size)
            faces.append(face.astype('float32'))
        faces = np.asarray(faces)
        faces = np.expand_dims(faces, -1)
        emotions = pd.get_dummies(data['emotion']).as_matrix()
        return faces, emotions

# 将数据归一化
def preprocess_input(x, v2=True):
    x = x.astype('float32')
    x = x / 255.0
    if v2:
        x = x - 0.5
        x = x * 2.0
    return x

载入数据后将数据集划分为训练集和测试集,在程序中调用上面的函数代码如下:

from load_and_process import load_fer2013
from load_and_process import preprocess_input
from sklearn.model_selection import train_test_split

# 载入数据集
faces, emotions = load_fer2013()
faces = preprocess_input(faces)
num_samples, num_classes = emotions.shape

# 划分训练、测试集
xtrain, xtest,ytrain,ytest = train_test_split(faces, emotions,test_size=0.2,shuffle=True)

3. 搭建表情识别的模型

    接下来就是搭建表情识别的模型了,这里用到的是CNN的主流框架之mini_XCEPTIONXCEPTIONGoogleInception后提出的对Inception v3的另一种改进,主要是采用深度可分离的卷积(depthwise separable convolution)来替换原来Inception v3中的卷积操作。XCEPTION的网络结构在ImageNet数据集(Inception v3的设计解决目标)上略优于Inception v3,并且在包含3.5亿个图像甚至更大的图像分类数据集上明显优于Inception v3,而两个结构保持了相同数目的参数,性能增益来自于更加有效地使用模型参数,详细可参考论文:Xception: Deep Learning with Depthwise Separable Convolutions,论文Real-time Convolutional Neural Networks for Emotion and Gender Classification等。

图片展示

    既然这样的网络能获得更好结果又是主流,那当然有必要作为对比算法实现以下了,这里博主模型这部分的代码引用了GitHub:https://github.com/oarriaga/face_classification中的模型(其他地方也能找到这个模型的类似代码),模型框图如上图所示,其代码如下:

def mini_XCEPTION(input_shape, num_classes, l2_regularization=0.01):
    regularization = l2(l2_regularization)

    # base
    img_input = Input(input_shape)
    x = Conv2D(8, (3, 3), strides=(1, 1), kernel_regularizer=regularization,
                                            use_bias=False)(img_input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(8, (3, 3), strides=(1, 1), kernel_regularizer=regularization,
                                            use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    # module 1
    residual = Conv2D(16, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(16, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(16, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
    x = layers.add([x, residual])

    # module 2
    residual = Conv2D(32, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(32, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(32, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
    x = layers.add([x, residual])

    # module 3
    residual = Conv2D(64, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(64, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(64, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
    x = layers.add([x, residual])

    # module 4
    residual = Conv2D(128, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(128, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = SeparableConv2D(128, (3, 3), padding='same',
                        kernel_regularizer=regularization,
                        use_bias=False)(x)
    x = BatchNormalization()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
    x = layers.add([x, residual])

    x = Conv2D(num_classes, (3, 3),
            #kernel_regularizer=regularization,
            padding='same')(x)
    x = GlobalAveragePooling2D()(x)
    output = Activation('softmax',name='predictions')(x)

    model = Model(img_input, output)
    return model

4. 数据增强的批量训练

    神经网络的训练需要大量的数据,数据的量决定了网络模型可以达到的高度,网络模型尽量地逼近这个高度。然而对于人脸表情的数据来说,都只存在少量的数据Extended Cohn-Kanada (CK+)的数据量是远远不够的,并且CK+多是比较夸张的数据。Kaggle Fer2013数据集也不过只有3万多数据量,而且有很多遮挡、角度等外界影响因素。既然收集数据要花费很大的人力物力,那么我们就用技术解决这个问题,为避免重复开发首先还是看看有没有写好的库。博主又通读了遍Keras官方文档,其中ImageDataGenerator的图片生成器就可完成这一目标。

为了尽量利用我们有限的训练数据,我们将通过一系列随机变换堆数据进行提升,这样我们的模型将看不到任何两张完全相同的图片,这有利于我们抑制过拟合,使得模型的泛化能力更好。在Keras中,这个步骤可以通过keras.preprocessing.image.ImageGenerator来实现,这个类使你可以:在训练过程中,设置要施行的随机变换通过.flow或.flow_from_directory(directory)方法实例化一个针对图像batch的生成器,这些生成器可以被用作keras模型相关方法的输入,如fit_generator,evaluate_generatorpredict_generator。——Keras官方文档

    ImageDataGenerator()是一个图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小(比如进行旋转,变形,归一化等),增强模型的泛化能力。结合前面的模型和数据训练部分的代码如下:

"""
Description: 训练人脸表情识别程序
"""

from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from load_and_process import load_fer2013
from load_and_process import preprocess_input
from models.cnn import mini_XCEPTION
from sklearn.model_selection import train_test_split

# 参数
batch_size = 32
num_epochs = 10000
input_shape = (48, 48, 1)
validation_split = .2
verbose = 1
num_classes = 7
patience = 50
base_path = 'models/'

# 构建模型
model = mini_XCEPTION(input_shape, num_classes)
model.compile(optimizer='adam', # 优化器采用adam
              loss='categorical_crossentropy', # 多分类的对数损失函数
              metrics=['accuracy'])
model.summary()

# 定义回调函数 Callbacks 用于训练过程
log_file_path = base_path + '_emotion_training.log'
csv_logger = CSVLogger(log_file_path, append=False)
early_stop = EarlyStopping('val_loss', patience=patience)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.1,
                              patience=int(patience/4),
                              verbose=1)
# 模型位置及命名
trained_models_path = base_path + '_mini_XCEPTION'
model_names = trained_models_path + '.{epoch:02d}-{val_acc:.2f}.hdf5'

# 定义模型权重位置、命名等
model_checkpoint = ModelCheckpoint(model_names,
                                   'val_loss', verbose=1,
                                    save_best_only=True)
callbacks = [model_checkpoint, csv_logger, early_stop, reduce_lr]

# 载入数据集
faces, emotions = load_fer2013()
faces = preprocess_input(faces)
num_samples, num_classes = emotions.shape

# 划分训练、测试集
xtrain, xtest,ytrain,ytest = train_test_split(faces, emotions,test_size=0.2,shuffle=True)

# 图片产生器,在批量中对数据进行增强,扩充数据集大小
data_generator = ImageDataGenerator(
                        featurewise_center=False,
                        featurewise_std_normalization=False,
                        rotation_range=10,
                        width_shift_range=0.1,
                        height_shift_range=0.1,
                        zoom_range=.1,
                        horizontal_flip=True)

# 利用数据增强进行训练
model.fit_generator(data_generator.flow(xtrain, ytrain, batch_size),
                        steps_per_epoch=len(xtrain) / batch_size,
                        epochs=num_epochs,
                        verbose=1, callbacks=callbacks,
                        validation_data=(xtest,ytest))

5. 系统UI界面的实现

    上面的模型训练好了,但对于我们来说它的作用就只是知道了其准确率还行,其实深度学习的目的最重要还是应用,是时候用上面的模型做点酷酷的东西了。可不可以用上面的模型识别下自己表达的情绪呢?不如做个系统调取摄像头对实时画面中的表情进行识别并显示识别结果,既能可视化的检测模型的实用性能,同时使得整个项目生动有趣激发自己的创造性,当你向别人介绍你的项目时也显得高大上。这里采用PyQt5进行设计,首先看一下最后的效果图,运行后的界面如下:

图片展示

    设计功能:一、可选择模型文件后基于该模型进行识别;二、打开摄像头识别实时画面中的人脸表情;三、选择一张人脸图片,对其中的表情进行识别。选择一张图片测试识别效果,如下图所示:

图片展示

本文转载自思绪无限:人脸表情识别系统介绍——上篇(python实现,含UI界面及完整代码)_思绪无限的博客-CSDN博客_人脸表情识别系统

感谢大家的支持。

  • 11
    点赞
  • 124
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
### 回答1: 实时人脸表情识别是一种基于人工智能和计算机视觉的技术,结合Python编程语言进行毕业设计的主题。该项目旨在实现对人脸表情的实时识别和分类,通过分析和判断人脸表情的变化,进而实现情感识别和情感分析。 首先,为了实现实时人脸表情识别,我们需要采集一组包含不同表情人脸图像数据集。此数据集可以通过网络资源、开源数据集或自己采集得到。接下来,我们使用Python中的图像处理库OpenCV来获取实时视频流,并使用面部检测算法定位和提取视频流中的人脸。 然后,我们需要使用深度学习方法来训练一个人脸表情分类器。可以使用所采集到的人脸图像数据集,使用Python中的深度学习框架如TensorFlow或PyTorch来构建一个卷积神经网络(CNN)模型。该模型将接受人脸图像作为输入,经过多个卷积层和池化层进行特征提取,并使用全连接层进行分类预测。 在训练好的模型基础上,我们可以将其应用于实时人脸表情识别。通过将每一帧的人脸图像传入该模型,可以获取到实时的人脸表情分类结果。可以根据分类结果,判断人脸表情是开心、生气、惊讶等不同的情绪。 最后,为了更好地展示实时人脸表情识别的效果,我们可以将识别结果通过图像或视频的方式展示出来,比如将分类结果添加在人脸图像上方,或者在视频中不同表情时变换特定符号或贴图。 总结来说,实时人脸表情识别毕业设计将采用Python编程语言,结合图像处理库和深度学习框架,通过建立和训练卷积神经网络模型,实现对实时人脸表情识别和分类,并将识别结果进行展示。该项目对于理解和实践人工智能、计算机视觉和深度学习等相关领域的知识具有重要意义。 ### 回答2: 实时人脸表情识别是一种使用计算机视觉技术来检测和识别人脸表情的方法。而使用Python语言进行实时人脸表情识别毕业设计,可以通过以下步骤来完成: 1. 数据集准备:首先需要准备一个包含多种表情人脸图像数据集。可以使用公开的人脸表情数据集,如FER2013、CK+等,或者自己构建数据集。 2. 数据预处理:对数据集进行预处理,包括将图像进行裁剪和缩放,使其符合模型输入的要求。还可以使用数据增强技术来扩充数据集,以提高模型的泛化能力。 3. 特征提取:利用深度学习模型,如卷积神经网络(CNN),来提取人脸图像的特征。可以使用已经预训练好的CNN模型,如VGGNet、ResNet等,也可以根据具体需求自己搭建模型。 4. 模型训练:使用提取到的特征作为输入,利用训练集进行模型的训练。可以使用Python的深度学习库,如Tensorflow、Keras等,来搭建和训练模型。在训练过程中,可以使用交叉验证等技术来评估模型的性能。 5. 模型验证:使用测试集对训练好的模型进行验证,评估其在实时人脸表情识别任务上的性能。可以计算模型的准确率、召回率等评价指标,或者通过混淆矩阵来分析不同表情类别的识别结果。 6. 实时表情识别:将训练好的模型应用到实时视频流中,进行人脸表情的实时识别。可以使用Python的图像处理和视频处理库来实现这一步骤,如OpenCV、Dlib等。通过实时检测人脸区域,并对每个人脸区域进行表情分类。 7. 界面设计和优化:将实时人脸表情识别算法与用户界面结合,可以使用Python的GUI库,如Tkinter等,设计一个友好的界面,使用户可以方便地进行实时人脸表情的测试和观察。 通过以上步骤的实现,我们可以完成一个基于Python的实时人脸表情识别系统。该系统可以用于情感分析、人机交互等领域,具有一定的实际应用价值。 ### 回答3: 实时人脸表情识别是一种通过使用Python编程语言开发的技术,用于实时检测和识别人脸表情。它可以分析人脸上的特征,并根据这些特征识别人脸表情的种类,例如开心、悲伤、惊讶等。 实时人脸表情识别毕业设计主要包括以下几个步骤: 1. 数据集准备:首先,需要准备一份包含人脸表情样本的数据集。可以通过收集照片、视频或者使用现有的数据集来构建。 2. 数据预处理:对数据进行预处理是非常重要的一步。可以使用Python图像处理库如OpenCV对图像进行裁剪、缩放和灰度化等处理,以提升后续的算法准确度。 3. 特征提取:接下来,使用Python中常用的机器学习库,如Scikit-learn或Tensorflow等,进行特征提取。可以使用基于人脸的特征提取算法,例如局部二值模式(Local Binary Patterns,LBP)或主成分分析(Principal Component Analysis,PCA),来提取人脸表情的特征。 4. 训练模型:使用已经提取的特征,建立分类器模型。可以使用各种机器学习算法,例如支持向量机(Support Vector Machine,SVM)或卷积神经网络(Convolutional Neural Network,CNN),对数据集进行训练,以使模型能够准确地识别人脸表情。 5. 实时检测和识别:最后,使用摄像头采集实时视频流,并对每一帧图像进行处理和分析,以实现人脸表情的实时检测和识别。可以使用Python库如Dlib或OpenCV中的人脸检测器和分类器,对视频流中的人脸进行定位和分类。 总结来说,实时人脸表情识别毕业设计将通过预处理、特征提取、模型训练和实时检测等步骤,利用Python编程语言实现对人脸表情的实时检测和识别。这项技术可以应用于许多领域,例如情感分析、人机交互等,具有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值