3Sum(数组中三个数之和为零)

    Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
    方法一:达不到时间要求的解法,时间复杂度为o(n*n),首先对数组进行排序,然后遍历数组中的每个元素,当遍历某个元素时,从该元素的下一个位置开始,找两个数之和为该元素的相反数。那么这三个数就满足要求。时间的主要开销在,每次都需要判断该组结果是否已经在结果集中,优化一可以省略此步骤的判断,如果start位置的元素和start+1位置的元素相等,我们直接把start向前移动两位,而不是移动一位。同理,last位置的元素和last-1位置的元素相等,我们把last向后移动两位,而不是移动一位。这样就省略判断该组结果是否已经在结果集中。优化二:如果当前遍历的元素和该元素的下一个位置的元素相等,则我们可以把当前位置向前移动两位。
vector<vector<int>> threeSum(vector<int>& nums) 
{
	//存储结果
	vector<vector<int>> res;
	//如果数组中元素个数小于2,则返回空
	if (nums.size() <= 2)
		return res;
	//对数组进行排序
	sort(nums.begin(), nums.end());
	//找到第一个大于零的位置
	int index = 0;
	while (index < nums.size())
	{
		if (nums[index] < 0)
			index++;
		else
			break;
	}
	//循环遍历数组的非正数元素,优化二:如果当前元素和下一个元素相等,则i向前移动两位
	for (int i = 0; i <= index; ++i)
	{
		
		if (i <= nums.size() - 4)
		{
			int start = i + 1;
			int last = nums.size() - 1;
			int target = nums[i];
			while (start < last)
			{
				if (nums[start] + nums[last] == -target)
				{
					vector<int> tmp = { target, nums[start], nums[last] };
					if (res.empty())
						res.push_back(tmp);
					//判断该组结果是否已经在结果集中,优化一可以省略此步骤判断
					else if (tmp != res.back())
						res.push_back(tmp);
					start++;//start向前移动一位
					last--;//last向后移动一位,
				}
				else if (nums[start] + nums[last] < -target)
				{
					start++;
				}
				else
				{
					last--;
				}
			}
		}
	}
	return res;
}

方法二:在方法一的基础上进行进行优化,可以达到时间要求。时间复杂度也是o(n*n)。
vector<vector<int>> threeSum(vector<int>& nums)
{
	vector<vector<int>> res;
	if (nums.size() <= 2)
		return res;
	//对nums进行排序
	sort(nums.begin(), nums.end());
	//循环遍历数组中的每个元素
	for (int i = 0; i < nums.size() - 2 ;)
	{
		//如果当前元素大于零,可以提前终止
		if(nums[i] > 0)
			break;
		int start = i + 1;
		int last = nums.size() - 1;
		int target = nums[i];
		while (start < last)
		{
			if (nums[start] + nums[last] == -target)
			{
				vector<int> tmp = { target, nums[start], nums[last] };
				res.push_back(tmp);
				//优化一:
				while (start < last && nums[start] == nums[++start]);
				//{
				//	start++;
				//}
				while (start < last && nums[last] == nums[--last]);
				//{
					//last--;
				//}
				//start++;
				//last--;
			}
			else if (nums[start] + nums[last] < -target)
			{
				start++;
			}
			else
			{
				last--;
			}
		}
		//优化二:
		while (i < nums.size() - 2 && nums[i] == nums[++i]);
		//{
			//i++;
		//}
	}
	return res;
}
在C语言中,要找到数组中连续三个之和的最小值,你可以采用遍历数组的方式,每次计算当前元素加上前两个元素的和,然后更新最小值。这里是一个简单的算法步骤: 1. 初始化三变量,分别存储第一个元素、第二个元素的和以及已知的最小和(设为数组的第一个元素)。 2. 遍历数组从第二个元素开始,因为已经考虑了第一个元素作为基础,所以从索引i=1开始。 - 对于每个索引i,计算当前元素a[i]加上之前两个元素(a[i-1]和a[i-2])的和。 - 如果这个和小于当前已知的最小和,就更新最小和。 3. 遍历结束后,最小和就是你要找的结果。 以下是一个简单的C代码示例: ```c #include <stdio.h> int find_min_sum(int arr[], int n) { if (n <= 2) return INT_MAX; // 若数组长度少于3,返回最大整值 int first = arr[0]; int second = arr[1]; int min_sum = first + second; for (int i = 2; i < n; i++) { int current_sum = arr[i] + second; if (current_sum < min_sum) min_sum = current_sum; second = first; // 更新第二个元素为第三个元素 first = current_sum; // 更新第一个元素为当前和 } return min_sum; } int main() { int arr[] = {1, 2, -3, 5, 6}; int size = sizeof(arr) / sizeof(arr[0]); int result = find_min_sum(arr, size); printf("连续三个之和的最小值为: %d\n", result); return 0; } ``` 当你运行这段代码,它会输出数组中连续三个之和的最小值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值