Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2) 方法一:达不到时间要求的解法,时间复杂度为o(n*n),首先对数组进行排序,然后遍历数组中的每个元素,当遍历某个元素时,从该元素的下一个位置开始,找两个数之和为该元素的相反数。那么这三个数就满足要求。时间的主要开销在,每次都需要判断该组结果是否已经在结果集中,优化一可以省略此步骤的判断,如果start位置的元素和start+1位置的元素相等,我们直接把start向前移动两位,而不是移动一位。同理,last位置的元素和last-1位置的元素相等,我们把last向后移动两位,而不是移动一位。这样就省略判断该组结果是否已经在结果集中。优化二:如果当前遍历的元素和该元素的下一个位置的元素相等,则我们可以把当前位置向前移动两位。vector<vector<int>> threeSum(vector<int>& nums) { //存储结果 vector<vector<int>> res; //如果数组中元素个数小于2,则返回空 if (nums.size() <= 2) return res; //对数组进行排序 sort(nums.begin(), nums.end()); //找到第一个大于零的位置 int index = 0; while (index < nums.size()) { if (nums[index] < 0) index++; else break; } //循环遍历数组的非正数元素,优化二:如果当前元素和下一个元素相等,则i向前移动两位 for (int i = 0; i <= index; ++i) { if (i <= nums.size() - 4) { int start = i + 1; int last = nums.size() - 1; int target = nums[i]; while (start < last) { if (nums[start] + nums[last] == -target) { vector<int> tmp = { target, nums[start], nums[last] }; if (res.empty()) res.push_back(tmp); //判断该组结果是否已经在结果集中,优化一可以省略此步骤判断 else if (tmp != res.back()) res.push_back(tmp); start++;//start向前移动一位 last--;//last向后移动一位, } else if (nums[start] + nums[last] < -target) { start++; } else { last--; } } } } return res; }
方法二:在方法一的基础上进行进行优化,可以达到时间要求。时间复杂度也是o(n*n)。vector<vector<int>> threeSum(vector<int>& nums) { vector<vector<int>> res; if (nums.size() <= 2) return res; //对nums进行排序 sort(nums.begin(), nums.end()); //循环遍历数组中的每个元素 for (int i = 0; i < nums.size() - 2 ;) { //如果当前元素大于零,可以提前终止 if(nums[i] > 0) break; int start = i + 1; int last = nums.size() - 1; int target = nums[i]; while (start < last) { if (nums[start] + nums[last] == -target) { vector<int> tmp = { target, nums[start], nums[last] }; res.push_back(tmp); //优化一: while (start < last && nums[start] == nums[++start]); //{ // start++; //} while (start < last && nums[last] == nums[--last]); //{ //last--; //} //start++; //last--; } else if (nums[start] + nums[last] < -target) { start++; } else { last--; } } //优化二: while (i < nums.size() - 2 && nums[i] == nums[++i]); //{ //i++; //} } return res; }
3Sum(数组中三个数之和为零)
最新推荐文章于 2024-10-07 22:06:11 发布