背景:
近几年,随着国内外大模型产品的批量涌现,如:ChatGPT、DeepSeek、Grok、文心一言、Kimi、豆包等,人工智能技术再次引发现象级关注,下一轮技术革命——人工智能,也逐步成为全社会的共识。
为赶上这次技术革命,需要持续学习、了解人工智能相关的知识。但当前网络上的各类知识:
- 要么过于专业,即使搞研究的人员也很难看懂;
- 要么过于表面,内容空泛,多存在夸大和误导性。
针对上述问题,结合在日常学习、工作中对技术和市场的理解,便萌生了一种想法:计划以通俗的语言把人工智能发展的一些关键概念、逻辑讲清楚,供各位参考。
(声明:本人非专业科研人员,如有描述不准确/错漏之处,还望批评指正,十分感谢!)
本篇内容,主要梳理——基于“大模型”的数字化转型思路。
2025年春节期间,DeepSeek横空出世,似乎一举斩断了西方在人工智能方向的技术领先优势,各种宣传铺天盖地。
春节后,在DeepSeek技术的带动下,很多地区政府机关、大中小企业发起了“智能化转型工作”,三个月过去,大家冷静下来后,我们发现这些项目基本都是“雷声大、雨点小”,渐渐没有动静了。
从前几年提出的“数字化转型”,到近两年的“智慧化转型”,我们在开展这些工作的过程中,似乎总是呈现虎头蛇尾的现象,给人一种“眼看他起高楼、眼看他宴宾客、眼看他楼塌了”的观感。
笔者经过在多个项目中的沟通、交流和复盘,也想借此机会,谈一下对这些事情的看法。
总的来看,笔者认为,出现上述问题,还是几个原因导致:
- 认识不足:缺乏对信息化技术工具的认识
- 完美主义:总想等所有条件都具备后再启动
- 缺乏路径:没有一套完整的方法论指导
下面,结合实际工作,对这几个问题逐个分析下,希望能给大家提供一些参考。
一、认识不足
很多机构在推行数字化转型或智慧化转型的过程中,还是缺乏基本的认识,容易做出“拍脑袋”的决策方案,主要包括以下几方面。
(一)缺乏对数字化转型的认识
我们先来看几个数据:
- 福布斯的调查报告显示,84%的企业在数字化转型中遭遇了失败;
- Everest Group研究表明,73%的企业表示没有在数字化转型中获得任何商业价值;
- Gartner公司调查发现,84%的受访者表示数字化转型体验未达到预期目标。
为什么会出现上述问题?
其实可以分析很多原因,但归根到底,我认为,最普遍、也是最根本的原因是:
管理者普遍缺乏对数字化转型的认识,习惯于把数字化技术同经营管理制度和体系割裂开来看待,没有把数字化转型是服务发展、服务经营的意识摆正。
也是基于对上述问题的认识不够,才导致数字化转型过程中出现的下列各类情况:
- 速成型:对数字化转型的长期性缺乏认识,想要一蹴而就
- 烟囱型:无法突破各级部门间的管理制度,难以筑牢根基
- 盲目型:缺乏专业的专家带领,没有统筹规划,盲目上线项目
- 阻碍型:没有大领导的牵头督办,各项工作开展举步维艰
最终导致企业/政府机关在数字化转型中面临失败。
不仅如此,还形成一种很不好的风气:
1.配合度差:各单位工作人员都认为数字化转型就是一个空话,不再愿意配合
2.市场萎靡:似乎谁再提数字化转型,谁就是大忽悠,大家也普遍不再开展此类工作
但总的来说,数字化转型还是企业/政府机关发展的必经之路,前期的工作都是有一定价值的,至少积累了经验,不能因短期没看到成果就放弃。
要做好数字化转型,关键不在于技术,而在于提高对数字化转型的认识——数字化转型是不同于过往的信息化升级的,在数字化转型过程中,技术只是提供工具支撑能力,要结合实际经营管理体系和制度,以数字化的技术能力,赋能/重塑全套经营管理工作,以提升效率、增加效益、提高产品及服务质量。
(二)缺乏对大模型的认识
受各类媒体的误导,管理层往往认为大模型是能直接解决当前一切实际问题的“灵丹妙药”。比如:
- “大模型可以实现编程,你这个平台为什么还要我这么多钱?”
- “大模型能直接梳理项目流程,为什么你们现在还在用这么low的管理工具?”
- “大模型能统计和分析数据,为什么我想要的那些数据你们还给不出来?”
- ......
总之,就是一个思路——认为大模型能解决一切问题。
但对于懂行的人员来说,这就是一个极大的误解。
说到底,大模型本质还是一个“更加智能的技术工具”。相当于给你提供一个计算机,但需要你来想好算什么、怎么算,再借助计算机算出来。
有了这个工具,那对于专家来说,就可以计算各种复杂函数;对于小学生来说,就只会计算加减乘除。所以大模型的使用效果是取决于使用人和使用方式的。
所以,在很多时候,不得不频繁跟各级领导解释:
1.大模型能力范围:无论是chatGPT、DeepSeek、还是Grok,在当前的发展阶段,其智慧化、自动化程度还远未达到新闻媒体宣传的效果。
2.大模型自动化程度:大模型或许在一定条件下可以编程,但其专业性、自动化程度、全面性、可用性、以及与现实需求的结合能力都有待考量。
退一步说,即使大模型可以提供想要的代码,但软件开发是一个复杂的系统工程,其工作包含了“需求分析、原型设计、可行性研究、系统架构设计、数据库设计、模块接口设计、安全设计、UI交互设计、环境搭建、代码开发、版本控制、测试方案、模块测试、缺陷管理、部署环境、发布管理、运维监控、项目管理、文档管理、风险管理”等等多项工作,涉及多个工种的协同保障,并不是单纯靠一两段代码就能完成的。
虽然能解释清楚,但往往还得落下一个埋怨:“是不是你们技术能力不够啊,我看新闻上说的怎么着怎么着......”,可以理解,毕竟把大家美好期望戳破的人是不受待见的,虽然是实话。
归根到底,要认识到——大模型的本质是一个智慧化工具,可以在某些方面为人类社会提供智慧化辅助和支持。但距离真正实现大家想象中的自动化、智能化,还有很长的路要走。
(三)缺乏对场景化应用的认识
上文提到,大模型是一个泛智能化工具,旨在帮助各业务环节提高效率和自动化、智能化程度。
在实际的行业应用中,比如政务服务、医疗服务、教育服务中,可能会细分出数千个场景,每个场景都有一套对应的逻辑和流程,并不仅仅是通过一个泛智能化工具就能解决场景化应用难题的。
对这方面认识不足,就会导致提出很多让人哭笑不得的要求:
1.你直接给我在网上爬一下数据,让我看看区域内有多少家企业
2.你用大模型给我分析下地区的高危风险企业,然后动态展示出来
3.你能不能给我部署一个大模型,能代替医生给病人看病
......
在这里,关键还是要认识到——要真正解决各方向各场景中的堵点、难点问题,一定是要结合该场景的实际工作流程、机制、模式开展,大模型等各类技术只是一些支持手段,关键在于业务流的打通,工作模式/机制的调整,整体业务模式的贯通。要依托实际业务开展方式,统筹完成“数据、大模型、应用”三位一体的建设工作,才可能取得实效。
(四)缺乏对数据要素的认识
现阶段,数据要素已经越来越成为人工智能行业的重中之重了。没有详实而具体的数据,即使再酷炫的应用界面、再强大的模型能力,也是“巧妇难为无米之炊”。
但很多人,还是缺乏对数据要素的理解:
- 要么认为,你给我从网上直接爬出来数据就行
- 要么认为,你从那些有数据的人手里买一些数据就好
- 要么认为,我这儿有一些数据,你应该直接把知识库给我建成
这些想法还是过于单纯,甚至过于儿戏了。在真正的业务应用中,比如:
- 如果要提高企业服务能力——可能涉及到的数据包括“企业基本信息(这个里面又包含了企业注册信息、股东信息、人员信息、对外投资、分支机构、企业联系方式等上百条信息类型)、企业标签信息、企业经营服务信息、企业信用风险信息”等等,仅仅要获取的信息类型就有数百条;
- 如果要建设政策的咨询服务——也不是说把一些政策文件爬出来就行,而是要进一步将其中的各类要素分解出来,才能精准地为使用人员提供服务和帮助。
- 在大多数服务中——即使前期已经收集齐了所有类型数据,但在实际应用场景建设过程中,还是要根据特定需要来调整数据的维度、类型。同时,还要开展数据治理工作,才能保障数据的质量和可靠性。
总的来说,数据要素的收集、治理、使用是一个复杂的系统工程,绝不是“爬一下、买一点、把现有数据上传上去”就能搞定的。
二、完美主义
很多单位在开展智能化转型过程中,容易出现“完美主义”倾向。
说两个典型的案例:
(一)案例一:数据要素治理
两个同级单位同时启动了数据要素工作。
- A单位:在开展工作期间,发现数据来源有问题、数据应用不明确、也不清楚怎么做,在建成一个工具平台后,就把这件事放下了;
- B单位:当然也遇到了类似问题,但B单位有个特点,就死磕。缺数据就要,要不到就买,实在没有就安排团队摸排,用了五年时间把一套数据要素底座搭了起来。
结果:等到DeepSeek等大模型横空出世的时候,B单位很轻易的就利用之前的数据开展了各项能力建设工作,而A单位这时候才发现,还得重新把那五年搁置的路走一遍......
(二)案例二:“干中学”和“学完干”
这个典型的案例关于“卫星”的。
1.马斯克如何做卫星
大家应该听说过,马斯克发射了很多卫星,用于建设“星链”。
那问题来了——马斯克的技术成熟吗?他想好“星链”怎么建设了吗?他解决了星链传输等一系列问题吗?
答案是:不成熟!没有!没有!
但是马斯克这个人的特点就是,我先做,做的过程中“逢山开路、遇水搭桥”,做着做着就做成第一了,就没有竞争对手了。
纵观马斯克的发展历史,无论是特斯拉,还是火箭回收,都是这个逻辑。
2.一些研究机构如何做卫星
不同于马斯克,很多研究机构,采用了另一种方式——先把“星链”可能遇到的问题都设想一遍,再通过理论、建模等方式,逐个把问题试验解决。
当然不是说这种方式就不好。
关键问题是——
1.研究的问题都是假设的,在实际应用中会不会发生都不太好说,更别提在实际应用中普遍存在的问题偏离情况了,有可能很多前期理论研究都是无用功。
2.更要命的是,随着马斯克的卫星发射越来越多,优势卫星轨道很快就会被对方占满,到时其他机构就只能占用其他轨道资源了,成本和代价必然是更大的。
说这两个故事:
- 一方面,是提醒大家,很多工作都是靠长期的坚持来完成的,不是一朝一夕的事;
- 一方面,也是建议,之前在技术、模式、发展比较落后的时候,我们还能参考欧美等发达国家,但是在当前,我们已经立在潮头了,很难有人给我们提供直接、系统的参考了,很多事情都只能是走一步看一步,碰到问题再解决问题,很难一蹴而就。
三、路径参考
当然,大多数企业/政府机关,可能苦于没有一套完整的路径参考,所以在智能化转型过程中走的磕磕绊绊。
在此,结合过往的项目经验,提供一个相对通用的智能化场景建设工作开展路径,仅供大家参考。
整体智能化场景建设工作,建议遵循“需求筛选—>数据打通与治理—>应用开发—>试点运行—>推广应用”流程开展,下面对各个环节进行详细的介绍。
(一)需求筛选:明确当前要建设的场景应用及目标
在开展此阶段工作中,主要原则如下——
- 明确主要服务对象:以政务服务场景为参考,其主要服务对象为“企业、群众、领导、工作人员”,所以在需求规划中,主要了解这四类用户的痛点、堵点难题。
- 优先高频应用场景:任何场景化建设都需要结合实际业务流、数据流开展,都需要消耗时间、人工、资金等资源,建议优先开展高频应用场景筛选,以解决当前“急难愁盼”的堵点问题。
- 业务部门配合程度:场景化建设工作,要依托业务部门在实际工作场景中的痛点、堵点,做模式、机制、流程等优化或重建,也将涉及业务部门工作流程的调整或重建,确保业务部门是可以完全配合开展工作是非常必要的。
- 场景的可落地性:有一些应用场景,在当前的执行过程中,存在很多的不规范性、不确定性,比如:某项办事流程需要提供很多非标准化的资料、数据,或者涉及到多个层级多个单位的审批(中央、省级单位、市级单位、区级单位),或者现阶段就没有特别明晰和准确的流程系统(比如很多环节只能线下办理)。如果针对此类场景开展建设,就会遇到多部门协调、流程规范化、数据规范化等多项额外工作成本,建设会存在很大不确定性。
所以在建设规划之初,就应对该场景的“整体业务流程、所需数据支持、所需配合系统、需要配合部门”等多个维度进行清晰的梳理,确保数据可获得、各部门能配合、业务流程相对规范标准,系统可打通穿透,如此才能确保场景化建设工作的顺利推进。
在本环节中,需要明确如下信息:应用场景、业务全流程(包含:涉及系统、涉及部门、涉及人员)、数据需求及数据类型、数据获取方式。
(二)数据打通与治理:完成数据的归集治理形成可用的知识库
在开展此阶段工作中,主要工作如下。
- 数据框架搭建:一方面,根据场景化建设需要,完成对应的数据知识库搭建;另一方面,寻求有相关经验的团队协助,提前开展各类知识库框架搭建。
- 数据对接归集:根据数据框架中明确的数据需求、数据类型、数据获取方式,对接数据提供方,通过“数据库、API、文件系统”等方式,实现存量数据的传输,并建设数据共享机制(按天、按周等),以保持数据的更新。
- 数据质量治理:结合数据应用的需要,将归集的数据,通过向量化、OCR识别、清洗、整合等大数据治理能力,建立分类体系、提取核心数据要素、构建多维度数据标签,形成知识图谱(知识库)。
在本环节中,需要实现如下输出:各类知识库框架/标准建设、场景化知识库/知识图谱建设。
(三)应用开发:完成全套应用场景的对接、开发、部署
此阶段,就基本进入了执行阶段,交给软件开发团队按进度推进即可。
但要注意的是——
- 及时沟通:在开发过程中,要实时保持沟通和跟进,确保整个功能的开发不偏离原定需求及方向;
- 积极参与:要调动业务部门的积极性,让业务部门时刻参与此阶段工作,了解进展;
- 尽早测试:在具备测试条件情况下,第一时间给业务部门测试使用,来明确使用感受、问题,方便及时调整。
在本环节中,需要实现如下输出:实际应用、应用模型的建设(小程序、网站、甚至建模工具都可以,只要能实现功能的端到端支持)。
(四)试点运行:开展小规模试用,发现问题、优化实现
在正式上线之前,要开展小规模试用。
比如有20个窗口工作人员,可以先开通2个窗口做试用。
小规模试用主要是为了避免几个问题:
- 使用感受差:贸然大规模启用,很多人的习惯改不过来,可能出现各类负面情绪和问题,包括过多的咨询问题,也会让支撑人员措手不及,造成不好的使用感受。
- 不可预知问题多:通过小规模试用,可以很好的发现场景化应用的问题,敏捷迭代,避免被有心之人利用,造成舆论等各类压力。
- 前期成本高:初期小规模试用,也可以避免在基础设施资源上的过度投资和浪费,便于快速调整方向,节省资金压力。
在本环节中,主要是通过试用总结经验、优化不足、判断是否具备正式上线条件。
(五) 推广应用:培训并正式投入使用
如果通过了前面的试用,就可以针对该场景的全体业务人员进行培训了。
通过培训,确保所有工作人员的意识到位、实操能力具备,再正式投入试用中。
在此环节需注意:
- 支持到位:安排足够多的支持人员,避免大量咨询类问题同时出现,无人接应;
- 版本回退:要预留一定量的原业务环境,避免出现系统性问题无法处理;
- 收集问题:要定期(每天)收集和统计问题,逐步优化场景化应用;
- 关注舆论:要及时关注各类舆论消息,避免被有心之人利用。
如果能顺利完成1-2个月的试用,基本就通过这个阶段验证了,也就得到了各方的认可了,可以开展下一个场景化应用的建设工作了。
以上,通过介绍“认识不足、完美主义”问题,并给出“路径参考”,提供给大家“基于’大模型‘的智能化转型思路”,希望能解答困扰大家的问题,给大家一定参考和帮助!
如有不足,还希望批评指正!
2025年5月7日 北京