JAVA8 Hashmap的源码学习总结

Hashmap作为常用的集合之一,必须深入的了解和学习,同时也是面试的经常考点之一。
Hashmap在JDK1.8以后采用数组+链表+红黑树的结构来存储数据,首先介绍下Hashmap的概念:
1.参数概念
默认初始化容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
最大容量 2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
默认的负载因子 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
当某个桶的数量大于8时,会转化为红黑树。
static final int TREEIFY_THRESHOLD = 8;
当某个桶节点数量小于6时,会转换为链表,前提是它当前是红黑树结构。
static final int UNTREEIFY_THRESHOLD = 6;
当整个hashMap中元素数量大于64时,也会进行转为红黑树结构。
static final int MIN_TREEIFY_CAPACITY = 64;

2.基本概念
Node<K,V>[] tab; Node<K,V> 数组
Node<K,V> node类

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;                              //hash值
    final K key;								  //map的key值
    V value;                                    //map的value值
    Node<K,V> next;                     //下一个NODE

    Node(int hash, K key, V value, Node<K,V> next) {                构造函数初始化
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

在这里插入图片描述
3.现在对hashmap的主要方法进行分析:
put方法分析

 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
         如果表不存在或者标的长度为0,就进行扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
            计算index,如果不存在node就在该点上创建node
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            如果key值一样,直接覆盖该值
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
                判断是否为红黑树
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                判断是否为链表
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        如果链表的值大于8,就转为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    key值相等就覆盖
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        超过最大容量就扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

在这里插入图片描述
resize方法分析:

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold; //最大容量(临界值)
        int newCap, newThr = 0;
        oldCap意思是数组存在元素时
        if (oldCap > 0) {
        	当数组大于最大的容量时,返回它本身。
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            当它扩容2倍后,新的数组大小小于最大容量时,同时旧的数组大小大于默认数组大小。
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        当数组等于0时,同时临界值大于0时,临界值赋值给新的数组
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
        		初始化数组和临界值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        如果临界值等于0,初始化临界值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
   临界值赋值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
  • 4
    点赞
  • 4
    评论
  • 28
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
限时福利限时福利,15000+程序员的选择! 购课后添加学习助手(微信号:csdn590),按提示消息领取编程大礼包!并获取讲师答疑服务! 套餐中一共包含5门程序员必学的数学课程(共47讲) 课程1:《零基础入门微积分》 课程2:《数理统计与概率论》 课程3:《代码学习线性代数》 课程4:《数据处理的最优化》 课程5:《马尔可夫随机过程》 哪些人适合学习这门课程? 1)大学生,平时只学习了数学理论,并未接触如何应用数学解决编程问题; 2)对算法、数据结构掌握程度薄弱的人,数学可以让你更好的理解算法、数据结构原理及应用; 3)看不懂大牛代码设计思想的人,因为所有的程序设计底层逻辑都是数学; 4)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 5)想修炼更好的编程内功,在遇到问题时可以灵活的应用数学思维解决问题。 在这门「专为程序员设计的数学课」系列课中,我们保证你能收获到这些: ①价值300元编程课程大礼包 ②应用数学优化代码的实操方法 ③数学理论在编程实战中的应用 ④程序员必学的5大数学知识 ⑤人工智能领域必修数学课 备注:此课程只讲程序员所需要的数学,即使你数学基础薄弱,也能听懂,只需要初中的数学知识就足矣。 如何听课? 1、登录CSDN学院 APP 在我的课程中进行学习; 2、登录CSDN学院官网。 购课后如何领取免费赠送的编程大礼包和加入答疑群? 购课后,添加助教微信: csdn590,按提示领取编程大礼包,或观看付费视频的第一节内容扫码进群答疑交流!
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页

打赏

杨涛-这名字不存在

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者