The Bottom of a Graph POJ - 2553 强联通分量中出度为零的点集

19 篇文章 0 订阅
17 篇文章 0 订阅

强联通分量中出度为零的点集

题意
使用的图论的方式说明了一个新的定义,汇点的定义,v是图中的一个顶点,对于图中的每一个v能到达的顶点w,w也可达v,则称v为汇点。图的底部为图中顶点的子集,子集中的所有的点都是汇点,求图的底部。
思路
如果图的底部都是汇点,则说明底部中的任意两点都互相可达,则底部为强连通分量,并且没有出边,所以任务就变成求图的强连通分量并且出度为零的点集
代码

/*
 * Author       :  Echo
 * Email        :  1666424499@qq.com  
 * Description  :   
 * Created Time :  2017/10/15 17:54:39
 * Last Modify  :  2017/10/15 18:13:03
 * File Name    :  write.cpp
 */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>

using namespace std;
const int maxn=1e4;
const int maxm=1e6;
const int INF=1e9;
struct edge {
    int to,next;
}an[maxm];
int head[maxn];
int dfn[maxn]; //入栈时间戳
int ins[maxn]; //是否入栈
int low[maxn]; //最早发现时间
int stk[maxn]; //手工栈
int dot[maxn]; //缩点
int out[maxn]; //出度
int m=0;//edge 
int cntm;
int top;//stack
int cnt;//dot
int n;//point
int tm;//time
void addedge(int u,int v){
    an[++cntm].to=v;
    an[cntm].next=head[u];
    head[u]=cntm;
}
void tarjan(int u){
    dfn[u]=low[u]=++tm;
    stk[++top]=u;
    ins[u]=1;
    for(int i=head[u];i!=-1;i=an[i].next){
        int v=an[i].to;
        if(dfn[v]==0){
            tarjan(v);
            if(low[u]>low[v]) low[u]=low[v];
        } 
        else if(ins[v]&&low[u]>low[v]){
            low[u]=low[v];
        }
    }
    if(low[u]!=dfn[u]) return;
    int v=stk[top--];
    ins[v]=0;
    dot[v]=++cnt;
    while(u!=v){
        v=stk[top--];
        ins[v]=0;
        dot[v]=cnt;
    }
}
int main(){
    while(~scanf("%d",&n)){
        if(n==0)break;
        scanf("%d",&m);
        top=cnt=tm=0;
        for(int i=1;i<=n;i++){
            dfn[i]=ins[i]=out[i]=0;
            head[i]=-1;
        }
        for(int i=1;i<=m;i++){
            int u,v;
            scanf("%d%d",&u,&v);
            addedge(u,v);
        }
        for(int i=1;i<=n;i++){
            if(dfn[i]) continue; 
            tarjan(i);
        }
        for(int u=1;u<=n;u++){
            for(int i=head[u];i!=-1;i=an[i].next){
                int v=an[i].to;
                if(dot[u]==dot[v])continue;
                out[dot[u]]++;
            }
        }
        top=0;
        for(int i=1;i<=n;i++){
            if(out[dot[i]]) continue;
            stk[++top]=i;
        }
        for(int i=1;i<=top;i++){
            printf("%d%c",stk[i],i!=top? ' ':'\n');
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值