强联通分量中出度为零的点集
题意
使用的图论的方式说明了一个新的定义,汇点的定义,v是图中的一个顶点,对于图中的每一个v能到达的顶点w,w也可达v,则称v为汇点。图的底部为图中顶点的子集,子集中的所有的点都是汇点,求图的底部。
思路
如果图的底部都是汇点,则说明底部中的任意两点都互相可达,则底部为强连通分量,并且没有出边,所以任务就变成求图的强连通分量并且出度为零的点集
代码
/*
* Author : Echo
* Email : 1666424499@qq.com
* Description :
* Created Time : 2017/10/15 17:54:39
* Last Modify : 2017/10/15 18:13:03
* File Name : write.cpp
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
const int maxn=1e4;
const int maxm=1e6;
const int INF=1e9;
struct edge {
int to,next;
}an[maxm];
int head[maxn];
int dfn[maxn]; //入栈时间戳
int ins[maxn]; //是否入栈
int low[maxn]; //最早发现时间
int stk[maxn]; //手工栈
int dot[maxn]; //缩点
int out[maxn]; //出度
int m=0;//edge
int cntm;
int top;//stack
int cnt;//dot
int n;//point
int tm;//time
void addedge(int u,int v){
an[++cntm].to=v;
an[cntm].next=head[u];
head[u]=cntm;
}
void tarjan(int u){
dfn[u]=low[u]=++tm;
stk[++top]=u;
ins[u]=1;
for(int i=head[u];i!=-1;i=an[i].next){
int v=an[i].to;
if(dfn[v]==0){
tarjan(v);
if(low[u]>low[v]) low[u]=low[v];
}
else if(ins[v]&&low[u]>low[v]){
low[u]=low[v];
}
}
if(low[u]!=dfn[u]) return;
int v=stk[top--];
ins[v]=0;
dot[v]=++cnt;
while(u!=v){
v=stk[top--];
ins[v]=0;
dot[v]=cnt;
}
}
int main(){
while(~scanf("%d",&n)){
if(n==0)break;
scanf("%d",&m);
top=cnt=tm=0;
for(int i=1;i<=n;i++){
dfn[i]=ins[i]=out[i]=0;
head[i]=-1;
}
for(int i=1;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
}
for(int i=1;i<=n;i++){
if(dfn[i]) continue;
tarjan(i);
}
for(int u=1;u<=n;u++){
for(int i=head[u];i!=-1;i=an[i].next){
int v=an[i].to;
if(dot[u]==dot[v])continue;
out[dot[u]]++;
}
}
top=0;
for(int i=1;i<=n;i++){
if(out[dot[i]]) continue;
stk[++top]=i;
}
for(int i=1;i<=top;i++){
printf("%d%c",stk[i],i!=top? ' ':'\n');
}
}
return 0;
}