自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 收藏
  • 关注

原创 AI代理:未来技术的革命者

我们往往会高估短期的东西,但又去低估它长期的影响。很多人的热情与想象力都被激发,然而技术的进步难以跟上我们畅想的速度,此时不必有太大落差感,找到自己的方向,坚定的向前走就够了。

2024-05-07 17:36:40 657 1

原创 未来已来:解锁AGI的无限潜能与挑战

假设你有一天醒来,发现你的智能手机不仅提醒你今天的日程,还把你昨晚做的那个奇怪的梦解释了一番,并建议你可能需要减少咖啡摄入量——这不是科幻电影的情节,而是人工通用智能(AGI)潜在的未来场景。目前,我们所使用的AI系统,比如能够识别你的猫照片并自动打上“可爱”的标签的那种,它们非常擅长处理特定任务。但让我们想象一下,一个不仅仅擅长单一任务,而是可以像人类一样进行思考、学习和适应的智能系统。这正是AGI的承诺所在——不只是一个问题解决者,更是一个能在多领域展现高水平智能的全能型选手。

2024-04-22 17:49:59 1173

原创 AIGC技术的现状、应用与未来发展

AIGC技术利用先进的深度学习模型,通过大量数据训练,能够模拟人类在语言、视觉艺术等领域的创作过程。尤其在自然语言处理(NLP)、计算机视觉和音频处理领域,这种技术已经取得了显著的进展。例如,OpenAI的GPT系列模型和Google的BERT系列模型在文本生成和理解上表现出色。同时,像微软的Florence模型则推动了计算机视觉技术的发展,广泛应用于画质修复、视频剪辑等场景。自然语言处理(NLP)领域,AIGC技术已经取得了显著的进展。

2024-04-15 18:01:38 1047

原创 一文理解GPU及英伟达GPU参数汇总

H100是高性能计算和AI领域的技术标杆。A800特别为云计算和数据中心的高需求环境设计,支持高效的AI推理和深度学习训练,其核心技术包括Tensor核心的AI加速能力,为AI应用提供了极大的加速效果。简而言之,A800是一款多功能、高效能的GPU,非常适合处理要求苛刻的AI计算、高性能计算任务以及复杂的数据分析,为云计算和数据中心提供了强有力的支持。超越3090,4090是NVIDIA最强大的游戏GPU,为游戏玩家和内容创作者提供了极致的性能,无与伦比的光线追踪和AI功能,定义了未来游戏的视觉体验。

2024-04-08 17:43:17 2444

原创 实操数据预处理:从理论到实践的基础步骤

在快速发展的人工智能领域,数据不仅是基础,更是推动技术创新的关键力量。高质量的数据集是构建高效、准确模型的前提。本文将全面深入探讨数据预处理的各个环节,从基础的数据清洗到复杂的数据增强,再到高效的Python应用实践,为你提供一站式的数据处理解决方案。无论你的经验如何,这篇文章都将成为你宝贵的资源。

2024-04-01 17:30:18 1261

原创 ChatGPT眼中的房子符合中国国情吗?

2024-02-02 09:30:01 188

原创 AI把中国神话故事的唯美画出来了,感动

2024-01-25 14:21:50 452

原创 AI绘画-ChatGPT眼中中国成语原来长这样

2024-01-18 17:32:29 433

原创 我好像找到了ChatGPT会表达情绪的证据

2024-01-10 10:21:57 508 1

原创 AI绘画之爱吃香菜的和不爱吃香菜的都沉默了

2024-01-04 15:26:10 511 1

原创 来看看AI眼中的春晚吧

2023-12-26 13:22:50 199 1

原创 带ChatGPT勇闯“弱智吧”,第二弹

而今,我和ChatGPT,一个人类和一个AI,将在这个充满奇思妙想的世界里寻找答案,我惊呼与那些我答不出来的问题被其一一破解,问出那个问题的我,好像回到了儿时,当时我对这个世界也充满了这样那样的好奇,但那是问出这个问题的我,却没人在意,今天ChatGPT好像治愈了我心中某一块儿的被遗忘的小荒漠,重新在那里种上了小种子,究竟能长成什么已经不那么重要了,重要的是它不再是一片小荒漠了。今天,我带着一个特殊的伙伴——ChatGPT,这个人工智能的奇迹,踏上了一次前所未有的冒险。你有什么问题想问吗?

2023-12-20 09:32:42 122

原创 当国学经典《水调歌头》遇上AI绘画,效果惊呆啦!

这个效果我是没想到的,尤其最后一句“但愿人长久,千里共婵娟”,ChatGPT的理解能力还是在线的!大家有没有想看哪个诗呢?小的时候上语文课讲古诗的时候,遇到描写非常唯美的诗句时,脑海里总会出现这句诗的画面,当时就在想如果能一下子画出来就好了。如今ChatGPT4.0出了可以根据描述生成图片的功能,让它来根据古诗来生成图片怎么样呢?人有悲欢离合,月有阴晴圆缺,此事古难全。选择一首经典的词——苏轼《水调歌头》不应有恨,何事长向别时圆?但愿人长久,千里共婵娟。转朱阁,低绮户,照无眠。

2023-12-11 18:00:00 200

原创 带ChatGPT勇闯“弱智吧”!他竟然如此强大了

看来ChatGPT真的在很认真的回答我们的问题呢,他们还会察觉到我们背后可能存在的隐患,防止我们因为他的回答而做出一些不好的行为。如今人工智能,尤其是ChatGPT如此火爆,那不如我们来问问它,看它会怎么回答呢?看他会不会嫌弃我们呢?其实像这样的看似有些道理,但不能细品的问题在“弱智吧”里真的是层出不穷。如果我问你:“为什么我一闭眼就什么也看不到了”,你会怎么回答我?既然快递要3天才到,为什么不把所有的快递都提前3天呢?会不会觉着:这么简单的问题为什么就是打不出来呢?房东把房租给我,为什么不把房租给我呢?

2023-12-04 19:17:06 147

原创 当我跟ChatGPT说土味情话时......

当我跟ChatGPT说土味情话时......

2023-11-28 17:24:30 131

原创 【炼丹侠】TensorFlow隐藏操作

tensorflow还有其他数据结构,比如稀疏张量(tf.SparseTensor),张量数组(tf.TensorArrray),不规则张量(tf.RaggedTensor),字符串张量(tf.string)等等。矩阵的乘法为tf.matmul(),它提供的函数和numpy都差不多,但是有些不一样,比如求和.tf.reduce_sum(),求均值为tf.reduce_mean(),求最大值tf.reduce_max();keras会保存函数的名字,每次加载的适合需要提供一个字典,将函数名称映射到实际函数。

2023-11-06 13:29:53 102

原创 【炼丹侠】精品项目推荐-人脸检测识别模型dface

保证一次性教会你用dface,别忘了去炼丹侠官网试试更高性能的gpu资源!网址:https://liandanxia.com

2023-10-30 13:55:57 117

原创 YOLOv8训练自己的数据集(超详细)

接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)

2023-10-23 13:21:25 2922

原创 大模型训练场景下A100的使用需求

其次,A100提供高达80 GB的显存容量,能够满足大型神经网络所需的大内存空间,而且通过NVLink技术,多个A100 GPU可以共享大内存,支持更大规模的模型训练。在国内,由于美国的政策限制原因,很难大规模获取到A100服务器,零散购买的A100也是价格高昂,在大模型训练中成本难以接受,因此,租用云服务器成为了大模型训练的一个新的选择,炼丹侠AI服务平台解决了数据集的获取、算力的租用等问题,可以以极低的价格开箱即用A100服务器并进行定制化训练。视频《目标训练之上班再玩手机你就完了!

2023-10-17 17:11:39 407

原创 YOLOv8随着2023一块来了~刚开赶紧打开仓库尝尝鲜!

另外,我也写了一篇关于YOLOv8&YOLOv7&YOLOv5的数据对比,详情参看这篇YOLOv8(n/s/m/l/x)&YOLOv7(yolov7-tiny/yolov7/yolov7x)&YOLOv5(n/s/m/l/x)不同模型参数/性能对比(含训练及推理速度)。# w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']# 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']

2023-10-10 18:46:14 172

原创 【炼丹侠】使用yolov8训练安全帽数据

2. 简单而有效的设计:YOLOv8采用了简单而有效的设计,通过使用更深的网络结构和更多的特征层来提高检测性能。3. 多尺度检测:YOLOv8引入了多尺度检测的策略,通过在不同的特征层上进行预测,可以更好地处理不同尺度的目标。4. 自适应训练:YOLOv8采用了一种自适应训练策略,可以根据目标检测任务的复杂度和数据集的大小,自动调整模型的大小和训练策略。3. 多种规模的检测:YOLOv8提供了不同的模型大小,包括小型、中型和大型模型,以满足不同场景下的需求。这些模型可以在不同的硬件设备上进行部署和使用。

2023-10-02 11:39:36 214

原创 [炼丹侠]YOLOV5配置训练实战

首先打开yolov5的github的官网(这个网站在国外打开是很慢的,而且是有的时候能正常打开,有的时候是进不去的,但是大家第一次打不开的话,一定要多打开几次。,最高支持cuda11.6版本,所以我们选择cuda11.7版本的cuda,然后将下面红色框框中的内容复制下来,一定不要把后面的-c pytorch -c conda-forge也复制下来,因为这样运行就是还是在国外源下载,这样就会很慢。特别要注意的是,classes里面必须正确填写xml里面已经标注好的类,要不然生成的txt的文件是不对的。

2023-09-25 10:47:18 276

原创 【炼丹侠】如何用GPU服务器实现ResNet50训练

在图像分类任务中,ResNet-50能够高效地识别物体和场景,在目标检测任务中能够准确地定位和识别目标物体,而在图像分割任务中,它能够将图像分割为不同的区域并识别每个区域的对象或特征。此外,ResNet-50还在特征提取任务中有着出色表现,将图像转化为高级语义特征,可用于图像生成和迁移学习。在传统的卷积层后面,残差块通过将输入直接加到输出中,从而允许网络在必要时跳过某些层,使信息得以更轻松地传递。在本次训练过程中,通过对cifar10数据集的训练,使用A100进行加速的训练时长为。本次采用炼丹侠平台的A。

2023-09-18 16:55:33 361

原创 【炼丹侠】如何用GPU服务器实现ResNet训练

在目标检测中,作为特征提取器,ResNet可以用于定位和识别图像中的物体。ResNet旨在解决深层网络训练中的梯度消失和退化问题,使得可以训练更深、更复杂的神经网络,同时获得更好的性能。设置了模型训练对照组,一组为使用炼丹侠A100 GPU进行训练的ResNet18,另一组是使用炼丹侠CPU进行训练的ResNet18,本次训练的流程为定义模型、模型训练、模型总结,训练的内容是cifar10数据集。ResNet的成功为后续的深度学习研究和应用提供了重要的启示,尤其是在设计更深、更复杂的神经网络时的指导原则。

2023-09-11 13:49:27 211

原创 【炼丹侠】如何用GPU服务器实现GoogLeNet训练

GoogLeNet之所以引人注目,是因为它在减少参数数量的同时保持了较高的准确率,以及引入了一种称为"Inception模块"的创新结构。GoogLeNet在深度学习领域的贡献是引入了Inception模块,展示了一种有效地减少参数数量同时保持模型性能的方法,为后续的网络设计提供了有价值的启发。在炼丹侠A100服务器上GoogLeNet的训练加速比肉眼可见,相比于CPU计算,使用A100进行训练的时间节省了3个多小时,在实际项目运行中这个时间性能提升可能会更多。

2023-09-04 15:59:22 139

原创 【炼丹侠】如何用GPU服务器实现AlexNet训练

AlexNet是一种深度卷积神经网络,由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton于2012年提出。它是在ImageNet Large Scale Visual Recognition Challenge竞赛中取得突破性成果的模型,标志着深度学习在计算机视觉领域的崭露头角。

2023-08-28 13:40:11 229

原创 【炼丹侠】如何用GPU服务器实现VGGNet训练

本次选取经典的VGGNet对MNIST数据集进行训练操作,得到一个可用的模型文件,本次训练使用的服务器为炼丹侠平台A100服务器,其中GPU型号为A100 80GB,CPU使用了AMD EPYC 7542 32-Core Processor,训练分为了GPU训练测试和CPU训练测试。VGGNet的基本组成单元是由连续的卷积层和池化层构成的块,通常有两到三个卷积层,后面跟随一个池化层。相比于其他网络结构,如AlexNet,VGGNet采用了更深的网络结构,有更多的卷积层和池化层,从而提高了网络的表达能力。

2023-08-22 14:35:10 224

原创 【炼丹侠】如何使用GPU服务器实现CNN训练

CNN的设计灵感来源于生物学中的视觉皮层的工作原理,它使用了卷积操作来捕捉图像中的局部特征,并通过池化操作来减少数据的维度,从而实现特征的平移不变性和空间层次结构的建模。- 该模型包括两个卷积层(`conv1`和`conv2`),两个池化层(`pool`),以及两个全连接层(`fc1`和`fc2`)。- 在这个类中,我们继承了`nn.Module`基类,并在`__init__`方法中定义了神经网络的各层。- 在`forward`方法中,我们定义了前向传播的流程,包括卷积、池化和全连接等操作。

2023-08-15 15:20:26 391 1

原创 如何使用炼丹侠的A100?

NVIDIA A100以其卓越的性能和创新的架构成为不可或缺的基石。它为AI应用提供了前所未有的计算能力和效率,无论是深度学习、数据分析还是科学研究都展现出其出色的性能和可靠性。在追求更高精度、更快速度和更大规模的AI计算过程中,NVIDIA A100是不可或缺的强大引擎。无论您是研究者、开发者还是AI爱好者,只需联系我们就能立即获得,欢迎您的积极参与。1.进入炼丹侠官网(https://liandanxia.com/),并找到算力市场模块,在该模块下选择一个可用的服务器并进行租用。

2023-08-11 09:25:36 391 2

原创 5倍性能提升!A100超强加速

本次训练采用的是经典的LeNet网络,实现手写数字识别任务,选取的两个对照服务器均为炼丹侠A100服务器。炼丹侠A100加速版本训练总共耗时33秒。CPU版本训练总共耗时152秒。

2023-08-01 10:19:20 217

原创 基于YOLOv8的自制猫狗数据集训练与推理教程

Yolov8为ultralytics公司在2023年1月10号开源的一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,在还没有开源时就收到了用户的广泛关注,考虑到YOLOv8的优异性能,本次教程从训练到推理进行了全面的讲解。

2023-07-18 20:01:59 1361 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除