AI代理:未来技术的革命者 我们往往会高估短期的东西,但又去低估它长期的影响。很多人的热情与想象力都被激发,然而技术的进步难以跟上我们畅想的速度,此时不必有太大落差感,找到自己的方向,坚定的向前走就够了。
未来已来:解锁AGI的无限潜能与挑战 假设你有一天醒来,发现你的智能手机不仅提醒你今天的日程,还把你昨晚做的那个奇怪的梦解释了一番,并建议你可能需要减少咖啡摄入量——这不是科幻电影的情节,而是人工通用智能(AGI)潜在的未来场景。目前,我们所使用的AI系统,比如能够识别你的猫照片并自动打上“可爱”的标签的那种,它们非常擅长处理特定任务。但让我们想象一下,一个不仅仅擅长单一任务,而是可以像人类一样进行思考、学习和适应的智能系统。这正是AGI的承诺所在——不只是一个问题解决者,更是一个能在多领域展现高水平智能的全能型选手。
AIGC技术的现状、应用与未来发展 AIGC技术利用先进的深度学习模型,通过大量数据训练,能够模拟人类在语言、视觉艺术等领域的创作过程。尤其在自然语言处理(NLP)、计算机视觉和音频处理领域,这种技术已经取得了显著的进展。例如,OpenAI的GPT系列模型和Google的BERT系列模型在文本生成和理解上表现出色。同时,像微软的Florence模型则推动了计算机视觉技术的发展,广泛应用于画质修复、视频剪辑等场景。自然语言处理(NLP)领域,AIGC技术已经取得了显著的进展。
一文理解GPU及英伟达GPU参数汇总 H100是高性能计算和AI领域的技术标杆。A800特别为云计算和数据中心的高需求环境设计,支持高效的AI推理和深度学习训练,其核心技术包括Tensor核心的AI加速能力,为AI应用提供了极大的加速效果。简而言之,A800是一款多功能、高效能的GPU,非常适合处理要求苛刻的AI计算、高性能计算任务以及复杂的数据分析,为云计算和数据中心提供了强有力的支持。超越3090,4090是NVIDIA最强大的游戏GPU,为游戏玩家和内容创作者提供了极致的性能,无与伦比的光线追踪和AI功能,定义了未来游戏的视觉体验。
实操数据预处理:从理论到实践的基础步骤 在快速发展的人工智能领域,数据不仅是基础,更是推动技术创新的关键力量。高质量的数据集是构建高效、准确模型的前提。本文将全面深入探讨数据预处理的各个环节,从基础的数据清洗到复杂的数据增强,再到高效的Python应用实践,为你提供一站式的数据处理解决方案。无论你的经验如何,这篇文章都将成为你宝贵的资源。
带ChatGPT勇闯“弱智吧”,第二弹 而今,我和ChatGPT,一个人类和一个AI,将在这个充满奇思妙想的世界里寻找答案,我惊呼与那些我答不出来的问题被其一一破解,问出那个问题的我,好像回到了儿时,当时我对这个世界也充满了这样那样的好奇,但那是问出这个问题的我,却没人在意,今天ChatGPT好像治愈了我心中某一块儿的被遗忘的小荒漠,重新在那里种上了小种子,究竟能长成什么已经不那么重要了,重要的是它不再是一片小荒漠了。今天,我带着一个特殊的伙伴——ChatGPT,这个人工智能的奇迹,踏上了一次前所未有的冒险。你有什么问题想问吗?
当国学经典《水调歌头》遇上AI绘画,效果惊呆啦! 这个效果我是没想到的,尤其最后一句“但愿人长久,千里共婵娟”,ChatGPT的理解能力还是在线的!大家有没有想看哪个诗呢?小的时候上语文课讲古诗的时候,遇到描写非常唯美的诗句时,脑海里总会出现这句诗的画面,当时就在想如果能一下子画出来就好了。如今ChatGPT4.0出了可以根据描述生成图片的功能,让它来根据古诗来生成图片怎么样呢?人有悲欢离合,月有阴晴圆缺,此事古难全。选择一首经典的词——苏轼《水调歌头》不应有恨,何事长向别时圆?但愿人长久,千里共婵娟。转朱阁,低绮户,照无眠。
带ChatGPT勇闯“弱智吧”!他竟然如此强大了 看来ChatGPT真的在很认真的回答我们的问题呢,他们还会察觉到我们背后可能存在的隐患,防止我们因为他的回答而做出一些不好的行为。如今人工智能,尤其是ChatGPT如此火爆,那不如我们来问问它,看它会怎么回答呢?看他会不会嫌弃我们呢?其实像这样的看似有些道理,但不能细品的问题在“弱智吧”里真的是层出不穷。如果我问你:“为什么我一闭眼就什么也看不到了”,你会怎么回答我?既然快递要3天才到,为什么不把所有的快递都提前3天呢?会不会觉着:这么简单的问题为什么就是打不出来呢?房东把房租给我,为什么不把房租给我呢?
【炼丹侠】TensorFlow隐藏操作 tensorflow还有其他数据结构,比如稀疏张量(tf.SparseTensor),张量数组(tf.TensorArrray),不规则张量(tf.RaggedTensor),字符串张量(tf.string)等等。矩阵的乘法为tf.matmul(),它提供的函数和numpy都差不多,但是有些不一样,比如求和.tf.reduce_sum(),求均值为tf.reduce_mean(),求最大值tf.reduce_max();keras会保存函数的名字,每次加载的适合需要提供一个字典,将函数名称映射到实际函数。
YOLOv8训练自己的数据集(超详细) 接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)
大模型训练场景下A100的使用需求 其次,A100提供高达80 GB的显存容量,能够满足大型神经网络所需的大内存空间,而且通过NVLink技术,多个A100 GPU可以共享大内存,支持更大规模的模型训练。在国内,由于美国的政策限制原因,很难大规模获取到A100服务器,零散购买的A100也是价格高昂,在大模型训练中成本难以接受,因此,租用云服务器成为了大模型训练的一个新的选择,炼丹侠AI服务平台解决了数据集的获取、算力的租用等问题,可以以极低的价格开箱即用A100服务器并进行定制化训练。视频《目标训练之上班再玩手机你就完了!
YOLOv8随着2023一块来了~刚开赶紧打开仓库尝尝鲜! 另外,我也写了一篇关于YOLOv8&YOLOv7&YOLOv5的数据对比,详情参看这篇YOLOv8(n/s/m/l/x)&YOLOv7(yolov7-tiny/yolov7/yolov7x)&YOLOv5(n/s/m/l/x)不同模型参数/性能对比(含训练及推理速度)。# w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']# 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']