基于YOLO-V3(Darknet框架)的缺陷检测

本文介绍了基于YOLO-V3的缺陷检测方法,探讨了YOLO-V3算法的改进点,包括多尺度特征利用和darknet-53网络。在Darknet框架下,详细阐述了数据准备、训练过程以及Windows环境下Darknet的使用,并提供了训练所需资源链接。后续将讨论工程化应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

YOLO-V3是在速度和准确率之间tradeoff。在缺陷检测中,YOLO-V3算法也是非常常见且取得非常好效果的一种。

2.YOLO-V3算法

YOLO-V3(论文:https://arxiv.org/abs/1804.02767)是在YOLO-V1和YOLO-V2的基础上改进的,主要改进是1)利用多尺度特征进行对象检测;

2)更好的基础分类网络(如ResNet)和分类器 darknet-53;

3)延续9种尺度的先验框:采用K-means聚类的方法得到先验框的尺寸,为每种下采样尺度设定3种先验框,最终聚类出9种尺寸的先验框;

在Darknet(https://pjreddie.com/darknet)框架下展开YOLO-V3算法的开发,

Windows 版本 Darknet: 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值