1.前言
YOLO-V3是在速度和准确率之间tradeoff。在缺陷检测中,YOLO-V3算法也是非常常见且取得非常好效果的一种。
2.YOLO-V3算法
YOLO-V3(论文:https://arxiv.org/abs/1804.02767)是在YOLO-V1和YOLO-V2的基础上改进的,主要改进是1)利用多尺度特征进行对象检测;
2)更好的基础分类网络(如ResNet)和分类器 darknet-53;
3)延续9种尺度的先验框:采用K-means聚类的方法得到先验框的尺寸,为每种下采样尺度设定3种先验框,最终聚类出9种尺寸的先验框;
在Darknet(https://pjreddie.com/darknet)框架下展开YOLO-V3算法的开发,
Windows 版本 Darknet: