windows7下pytorch1.0(gpu版本)安装

概述:PyTorch1.0正式版来了,也是学习一波的节奏了。

为什么选择PyTorch???

研究人员及工程师可以轻松利用这一开源深度学习框架的新功能,包括可在 eager execution 和 graph execution 模式之间无缝转换的混合前端、改进的分布式训练、用于高性能研究的纯 C++ 前端,以及与云平台的深度集成

PyTorch 1.0 加速 AI 从原型到生产部署的工作流程。

1.本机环境:CUDA8.0+CUDNN6.0+Anconda3(python3.6),根据各自需求自行安装;

2.从Pytorch(https://pytorch.org/)官网下载对应的whl文件并安装,如下图;

3. 1)建议先下载好进行安装,如下命令:

pip3 install torch-1.0.0-cp35-cp35m-win_amd64.whl
pip3 install torchvision

2)如果直接安装就使用以下命令:

pip3 install https://download.pytorch.org/whl/cu80/torch-1.0.0-cp36-cp36m-win_amd64.whl
pip3 install torchvision

3)安装torchvision 可能会报错:

TypeError: parse() got an unexpected keyword argument 'transport_encoding'

解决 方法:

conda install pip 

4.测试pytorch gpu版本是否安装成功:

import torch
import torchvision
print(torch.cuda.is_available())

可能会出现的报错:

module compiled against API version 0xb but this version of numpy is 0xa

解决方法:

pip3 install --upgrade numpy

5.如果出现类似的报错,最好更新一下过期的库:

pip3 list
pip3 list --outdated
pip3 install --upgrade 库名

5. 接下来,就开始欢快的Pytorch 学习之路了,小白在路上!!!!!!!!!!!!!!!!

参考资料:[1]PyTorch 1.0 正式版发布了! - 知乎 

                  

   

安装PyTorchGPU版本,首先需要确保你的电脑具备支持CUDA的显卡。根据引用中提到的,你的电脑使用的是GeForce MX150显卡,它是支持CUDA的。 接下来,需要按照以下步骤安装PyTorchGPU版本: 1. 首先,下载并安装适用于你的CUDA版本的CUDA Toolkit。CUDA Toolkit是一个用于支持GPU计算的软件开发工具包。你可以从NVIDIA官方网站上下载与你的CUDA版本相对应的Toolkit。 2. 安装CUDA Toolkit后,打开Anaconda Prompt,输入以下命令来创建一个新的虚拟环境(可选步骤): ``` conda create --name myenv ``` 其中,"myenv"是你给虚拟环境起的名字,你可以根据自己的需求进行命名。 3. 激活刚才创建的虚拟环境: ``` conda activate myenv ``` 4. 接下来,使用conda命令来安装PyTorchGPU版本。根据引用中提到的,选择适合你的PyTorchtorchvision版本。例如,如果你想要安装PyTorch的1.4.0版本torchvision的0.5.0版本,可以使用以下命令: ``` conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=<your_cuda_version> -c pytorch ``` 其中,"<your_cuda_version>"是你所安装的CUDA Toolkit的版本号。 5. 等待安装完成后,就成功安装PyTorchGPU版本。 总结一下安装PyTorchGPU版本的步骤: 1. 确保你的电脑具备支持CUDA的显卡。 2. 下载并安装适用于你的CUDA版本的CUDA Toolkit。 3. (可选步骤)创建一个新的虚拟环境。 4. 激活虚拟环境。 5. 使用conda命令安装PyTorchGPU版本。 希望这些步骤对你有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值