分而治之的分治思想

分而治之的分治思想

分治思想

  1. 分(Devide):递归地将问题分解为多个形式与原问题一致,规模更小的子问题。
  2. 治(Conquer): 求解子问题。(如果存在重叠的子问题, 则可以考虑用记忆搜索或动态规划进行优化)
  3. 合并(Combine): 将子问题的解合并为原问题的解。

归并排序(Merge Sort)

void MergeSort(int* nums, int left, int right): 对 nums 数组 [left, right) 区间的元素进行排序。

  1. 分(Devide):令 mid = (left + right) / 2, 将区间划分为 [left, mid)[mid, right) 两个区间。
  2. 治(Conquer): 分别对 [left, mid)[mid, right) 两个区间的元素进行排序。
    MergeSort(nums, left, mid);
    MergeSort(nums, mid, right);
  1. 合并(Combine): 将 [left, mid)[mid, right) 两个区间排好序的元素进行合并。
    // merge...
    while (i < mid && j < right) {
        if (nums[i] <= nums[j]) {
            temp[k++] = nums[i++];
        } else {
            temp[k++] = nums[j++];
        }
    }
    while (i < mid) {
        temp[k++] = nums[i++];
    }
    while (j < right) {
        temp[k++] = nums[j++];
    }

    for (i = left; i < right; ++i) {
        nums[i] = temp[i-left];
    }
  1. 完整的实现源码如下:
#include <iostream>

using namespace std;

const static int NUMS_MAX_LEN = 1024;


void Print(int* nums, int len) {
    for (int i = 0; i < len; i++) {
        cout << nums[i] << " ";
    }
    cout << endl;
}

// sort for range [left, right)
void MergeSort(int* nums, int left, int right) {
    if (right <= left + 1) {
        return;
    }

    int mid = (left + right) / 2;

    MergeSort(nums, left, mid);
    MergeSort(nums, mid, right);

    int* temp = new int[right-left];
    int i = left, j = mid, k = 0;

    // merge...
    while (i < mid && j < right) {
        if (nums[i] <= nums[j]) {
            temp[k++] = nums[i++];
        } else {
            temp[k++] = nums[j++];
        }
    }
    while (i < mid) {
        temp[k++] = nums[i++];
    }
    while (j < right) {
        temp[k++] = nums[j++];
    }

    // copy...
    for (i = left; i < right; ++i) {
        nums[i] = temp[i-left];
    }

    delete[] temp;
}

int main() {
    int n, nums[NUMS_MAX_LEN];

    while (cin >> n) {
        for (int i = 0; i < n && i < NUMS_MAX_LEN; i++) {
            cin >> nums[i];
        }

        MergeSort(nums, 0, n);
        Print(nums, n);
    }
    return 0;
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页