最近读了一篇关于统计二进制位中1个数的文章:http://www.cnblogs.com/kaikai/archive/2006/02/15/330901.html
里面提到的第三种算法对于解决1个数比较多的情形,显然是比较高效的。因为算法三的时间复杂度是log(logN),而算法一和二的时间复杂度分别是logN以及N二进制表示中1的个数。但是对于算法三没有直观的理解,所以就简单写了这篇文章,帮助自己拓展一下思路。
举个简单的例子,现在有8个箱子,每个里面都装有一定数量的小球,现在需要你统计出全部小球的个数?
3 | 2 | 1 | 5 | 7 | 3 | 2 | 7 |
解决办法:
1. 每两个箱子一组,总共分成4组,对于每组中的两个箱子,分别求出每个箱子中的小球个数,然后两者相加,最后将两个箱子的小球合并到一个箱子中(假设可以放下),这样可以得到4个新的箱子,并且每个箱子中小球的个数也是知道的。
5 | 6 | 10 | 9 |
2. 对于新的箱子,还是每两个一组,按照步骤1的形式继续分组合并:
11 | 19 |
3. 重复上面的过程:
30 |
回到统计二进制位1的个数问题上,假设N = 1010 1101,那么算法三的过程大致如下:
1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
最后再把原文对于算法三的描述转载过来,但一直不理解作者所谓的并行计算是什么意思,个人感觉算法中的每步需要迭代处理,怎么并行??:
方法3:并行计算的- -这个太厉害了













POW是计算2的幂
MASK很奇怪,一个全1的无符号数字除以2的幂的幂加1?
好在打印出来还能看得懂:





MASK(0)分为16个部分,MASK(1)分为8个部分,...
ROUND中对n的处理:(n & MASK) + (n >> POW & MASK)
POW的值刚好是MASK中连续'0'(或者连续'1')的长度。也就是说ROUND把由MASK分开的n的各个部分中的高POW位和低POW位相加。
为了便于说明,取一个简单的部分:MASK(1)的0011
假设n的值为1001,那么ROUND后的结果就是10 + 01 = 11 b,把这个结果赋值给n,这时n的含义由原来的二进制位串变为'1'位的数量。特别的,当ROUND(n, 0)时,把n当作一个32个部分各自'1'位的数量。('0'表示没有'1',而'1'则表示有1个'1')
计算完n = ROUND(n, 0)后,n是一个16个部分各自'1'位数量的'数组',这个'数组'的每个元素只有2个二进制位。最大值为2,足够由2个二进制位来表示。
接下来,计算完n=ROUND(n,1)后,n是一个8个部分各自'1'位数量的'数组',这个'数组'的每个元素只有4个二进制位。最大值为4,足够由4个二进制位来表示。(实际只需要3个二进制位)
...
最后一步,计算n=ROUND(n,4)后,n是一个1个部分各自'1'位数量的'数组',这个'数组'的每个元素有32个二进制位。最大值为32,足够由32个二进制位来表示。(实际只需要6个二进制位)
这个代表32位内'1'位数量的32位二进制数也就是我们要求的结果。