深度学习
文章平均质量分 73
怕静电的皮卡皮卡
永远相信美好的事情即将发生
展开
-
池化种类以及区别
链接:https://www.zhihu.com/question/23437871/answer/24696910来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。pooling的结果是使得特征减少,参数减少,但pooling的目的并不仅在于此。pooling目的是为了保持某种不变性(旋转、平移、伸缩等),常用的有mean-pooling,max-pooling和St...转载 2018-04-07 15:24:46 · 4461 阅读 · 0 评论 -
激活函数
本文章参考斯坦福深度学习课程,图片也来自于课程截图为什么我们需要激活函数:没有激活函数的神经网络只不过是一个线性回归模型,它功率有限,并且大多数情况下执行得并不好。我们希望神经网络不仅仅可以学习和计算线性函数,而且还要比这复杂得多。1.sigmoid函数 缺点:1.饱和神经元(绝对值很大的数值)将使得梯度消失 x=10或-10时梯度为0,使用链式法则梯度相乘,梯度消失2.si...原创 2018-04-07 16:20:35 · 774 阅读 · 1 评论 -
神经网络训练细节
本文章中截图来自斯坦福大学深度学习课程权重初始化1.当用0初始化权重时会发生什么? 由于权重都为0,给定一个输入,每个神经元将在输入数据上有同样的操作,输出同样的值,得到相同的梯度,使用相同的方式更新,从而得到相同的神经元。 2.当权重初始化值太小时:激活值逐渐变成0,梯度也会变成0,因为不断乘以这么小的数,所有的都会变成03.当权重初始化值太大时:激活值饱和,梯度接近0数据预处理1.在卷积...原创 2018-04-08 11:31:59 · 425 阅读 · 0 评论 -
防止过拟合的方法
本文章所有截图来自于斯坦福深度学习课程,是个人看完视频后正则化小结。正则化的宏观概念就是你对你模型做的任何事情,也就是种种所谓的惩罚,主要目的是为了减轻模型的复杂度,而不是去试图拟合数据1.L1正则化(鼓励稀疏)L1更喜欢稀疏解,它倾向于让你的W大部分元素值接近0,少数元素除外,偏离02.L2正则化(权值衰减)L2正则化就是欧式范数的权重向量W。L2正则化理念上就是对这个权重向量的欧式范数进行惩罚...原创 2018-04-08 15:56:46 · 2208 阅读 · 0 评论 -
迁移学习
迁移学习:在数据量很小的情况下,可以根据其他已经训练好的模型,在该小数据集下进行训练,本文章截图来自于斯坦福大学深度学习课程原创 2018-04-08 17:00:45 · 208 阅读 · 0 评论