Excel数据分析
yangqingter
这个作者很懒,什么都没留下…
展开
-
使用Excel进行单因素方差分析
单因素方差分析将其他因素保持不变,只研究单个因素对事物的影响。例如:分析不同的地域对销售额的影响情况。调用分析工具数据解读:F=75.7>>3.05 说明地域因素对销售额的影响显著。其中F=MS组间/MS组内=5494.9/72.55原创 2016-05-10 15:29:39 · 1715 阅读 · 0 评论 -
Excel中使用Z-检验
条件:总体符合正态分布。随机抽取容量为n的样本,样本也服从正态分布。我们的实验目的是检验两个地区的猪肉价格是否有显著差异。假设:两个地区的猪肉价格没有显著差异步骤:1. 在Excel中使用随机数生成器生成两个待检验的总体。猪肉价格1:猪肉价格2:得到待检验的实验数据:2. 使用描述性统计获得数据感性认识。原创 2016-05-10 08:56:53 · 4265 阅读 · 0 评论 -
Excel中使用F-检验
F-检验 目的:检验两个正态总体的方差有无显著差异。F检验的假设是后一个总体的方差是否大于前一个总体。检验女生的身高分布方差是否大于男生实验使用数据 描述性统计使用F检验 数据分析P=0.0256得出结论:女生的身高分布方差不大于男生原创 2016-05-10 10:27:19 · 10932 阅读 · 0 评论 -
使用Excel生成符合正态分布的随机数
正态分布的应用非常广泛,自然科学和社会科学研究中很多对象都符合正态分布。本文介绍如何使用Excel的随机数生成器获得满足正态分布的随机数据。1. 使用Excel的随机数生成器2. 如图获得一个均值为0,标准差为0.5的正态分布的400个随机数3. 使用描述性统计观察数据4. 生成一个步长为0.05,范围为[-4~4]的序列5.使用直方图来观察数据原创 2016-05-10 11:27:03 · 22422 阅读 · 3 评论 -
使用Excel进行无重复双因素方差分析
假设有两个因素共同作用于一个结果,就需要对其做交叉检测,分析各自对结果的影响的显著程度。案例:对销售额的影响由门店所在区域和广告推广形式共同决定。 使用方差分析 分析结果行的F值为202>>3.2,列的F值9.34>3.49。说明地区是影响销售额的主要因素,推广形式是次要因素。原创 2016-05-10 14:23:44 · 6805 阅读 · 0 评论 -
使用Excel进行线性规划
线性规划是在一定的限制条件下,对前景进行规划以达到最优的方法。内容包括:1. 在现有人力,物理等资源的条件下,如何统筹安排以完成最多任务。2. 为完成既定任务,如何使得人力,物力等资源最小。本质核心是求最值。线性规划由目标函数约束条件组成。 目标函数表现为线性函数,约束条件表现为线性等式或不等式,一个变量的变动将引起相关变量的线原创 2016-05-11 11:06:14 · 3481 阅读 · 0 评论 -
使用Excel进行成对样本均值的t-检验
对同一总体在不同阶段抽样调查,可以看作从两个总体中抽取样本,两个样本数量相同,可以使用“成对样本均值的t-检验”,检验其均值有无明显差异。这种方法在科研中使用比较广泛,用来测试手段的有效性。示例:某厂家开发了一款减肥茶,声称有显著效果。为了考察其实际效果,随机找来21位试验者,记录使用前后的体重数数据如下表。 假设此减肥茶没有任何效果使用t-检验:结原创 2016-05-10 13:04:06 · 4817 阅读 · 0 评论 -
使用Excel进行傅立叶分析Fourier
傅立叶分析在工程中经常用到,通常可以研究变量的频率成分。使用Excel生成待研究数据,公式为:y==2*SIN(x*2)+COS(x)+RAND()*0.1其中包括两种不同的频率成分,且强度为两倍,还有一个强度为0.1的噪声信号分量。使用傅立叶分析工具得到分析的模数使用IMABS函数计算功率密度分析结果原创 2016-05-10 16:30:02 · 7841 阅读 · 2 评论 -
使用Excel计算峰度(Kurtosis)和偏度(Skewness)
峰度(Kurtosis)和偏度(Skewness)峰度是描述总体中所有取值分布形态陡缓程度的统计量。计算公式是:在Excel中的公式是:KURT因为是与标准正态分布比较,而标准正态分布的四阶矩为3,所以公式中减去3偏度是描述数据分布形态的统计量在Excel中的公式为:SKEW1. 在Excel中生成500个符合正态分布的随机变量。原创 2016-05-11 16:06:35 · 71114 阅读 · 2 评论