题目描述
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。
输入输出格式
输入格式:文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
文件中仅包含一个整数ans,代表篱笆的最短长度。
输入输出样例
输入样例#1:
2 2 2 2 1 1
输出样例#1:
2
说明
数据范围
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100
看到题目,略加思考,我们发现这是一道 最小割 问题,于是直接跑最大流即可。
关键是建图:
S向所有的羊,所有的狼向T,流量都是 MAX;
在矩形中相邻的羊和狼连边,流量为 1 ;
对于0的点怎么处理呢?
我们把它默认为羊,羊向 0,0 向狼连边即可,流量均为1。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define MAXN 100010
#define MAXM 110
#define MAX 99999999
#define id(x,y) ((x-1)*m+y)
using namespace std;
const int fx[4]={1,-1,0,0},fy[4]={0,0,1,-1};
int n,m,s,t,c=2;
int head[MAXN],deep[MAXN],g[MAXM][MAXM];
struct node{
int next,to,w;
}a[MAXN<<2];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
inline void add(int u,int v,int w){
a[c].to=v;a[c].w=w;a[c].next=head[u];head[u]=c++;
a[c].to=u;a[c].w=0;a[c].next=head[v];head[v]=c++;
}
bool bfs(){
int u,v;
queue<int> q;
for(int i=s;i<=t;i++)deep[i]=0;
deep[s]=1;
q.push(s);
while(!q.empty()){
u=q.front();
q.pop();
for(int i=head[u];i;i=a[i].next){
v=a[i].to;
if(a[i].w&&!deep[v]){
deep[v]=deep[u]+1;
if(v==t)return true;
q.push(v);
}
}
}
return false;
}
int dfs(int x,int limit){
if(x==t)return limit;
int v,sum,cost=0;
for(int i=head[x];i;i=a[i].next){
v=a[i].to;
if(a[i].w&&deep[v]==deep[x]+1){
sum=dfs(v,min(a[i].w,limit-cost));
if(sum>0){
a[i].w-=sum;
a[i^1].w+=sum;
cost+=sum;
if(cost==limit)break;
}
else deep[v]=-1;
}
}
return cost;
}
int dinic(){
int ans=0;
while(bfs())ans+=dfs(s,MAX);
return ans;
}
void init(){
n=read();m=read();
s=0;t=n*m+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
g[i][j]=read();
if(g[i][j]==1)add(id(i,j),t,MAX);
if(g[i][j]==2)add(s,id(i,j),MAX);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(g[i][j]==1)continue;
for(int l=0;l<4;l++){
int x=i+fx[l],y=j+fy[l];
if(x<1||x>n||y<1||y>m)continue;
if(g[x][y]==0||g[x][y]==1)add(id(i,j),id(x,y),1);
}
}
}
int main(){
init();
printf("%d\n",dinic());
return 0;
}