高并发-【抢红包案例】之一:SSM环境搭建及复现红包超发问题

版权声明:【show me the code ,change the world】 https://blog.csdn.net/yangshangwei/article/details/82975845

概述

在这里插入图片描述

电商的秒杀、抢购,春运抢票,微信QQ抢红包,从技术的角度来说,这对于Web 系统是一个很大的考验. 高并发场景下,系统的优化和稳定是至关重要的.

互联网的开发包括 Java 后台、 NoSQL、数据库、限流、CDN、负载均衡等内容, 目前并没有权威性的技术和设计,有的只是长期经验的总结,但是使用这些经验可以有效优化系统,提高系统的并发能力.

我们接下来的几篇博文主要讨论 Java 后台、 NoSQL ( Redis )和数据库部分技术.


抢红包案例

主要分以下几大部分:

  1. 环境搭建
  2. 模拟超量发送的场景-DataBase(MySql5.7)
  3. 悲观锁的实现版本-DataBase(MySql5.7)
  4. 乐观锁的实现版本-DataBase(MySql5.7)
  5. Redis实现抢红包

案例关注点

模拟 20 万元的红包,共分为 2 万个可抢的小红包,有 3 万人同时抢夺的场景 ,模拟出现超发和如何保证数据一致性的问题。

在高并发的场景下,除了数据的一致性外,还要关注性能的问题 , 因为一般而言 , 时间太长用户体验就会很差,所以要测试数据一致性系统的性能


工程结构

在这里插入图片描述


库表设计

MySql5.7

/*==============================================================*/
/* Table: 红包表                                        */
/*==============================================================*/
create table T_RED_PACKET
(
   id                   int(12)                        not null auto_increment COMMENT '红包编号',
   user_id              int(12)                        not null COMMENT '发红包的用户id',
   amount               decimal(16,2)                  not null COMMENT '红包金额',
   send_date            timestamp                      not null DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '发红包日期',
   total                int(12)                        not null COMMENT '红包总数', 
   unit_amount          decimal(12)                    not null COMMENT '单个红包的金额',
   stock                int(12)                        not null COMMENT '红包剩余个数',
   version              int(12) default 0              not null COMMENT '版本(为后续扩展用)',
   note                 varchar(256)                    null COMMENT '备注',,
   primary key clustered (id)
);

红包表表示存放红包的是一个大红包的信息,它会分为若干个小红包,为了业务简单,假设每一个红包是等额的。而对于抢红包而言,就是从大红包中抢夺那些剩余的小红包,剩余红包数会被记录在红包表中。 两个表有外键关联 T_RED_PACKET.id = T_USER_RED_PACKET.red_packet_id

/*==============================================================*/
/* Table: 用户抢红包表                                                */
/*==============================================================*/
create table T_USER_RED_PACKET 
(
   id                   int(12)                        not null auto_increment COMMENT '用户抢到的红包id',
   red_packet_id        int(12)                        not null COMMENT '红包id',
   user_id              int(12)                        not null COMMENT '抢红包用户的id',
   amount               decimal(16,2)                  not null  COMMENT '抢到的红包金额',
   grab_time            timestamp                      not null DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '抢红包时间',
   note                 varchar(256)                   null COMMENT '备注',
    primary key clustered (id)
);
/**
* 插入一个20万元金额,2万个小红包,每个10元的红包数据
*/
insert into T_RED_PACKET(user_id, amount, send_date, total, unit_amount, stock, note)
 values(1, 200000.00, now(), 20000, 10.00, 20000,'20万元金额,2万个小红包,每个10元');
commit;

这样就建好了两个表,并且将一个 20 万元金额,2 万个小红包,每个 10 元的红包信息插入到了红包表中,用作模拟数据。


Domain

有了这两个表,我们就可以为这两个表建两个 POJO 了,让这两个表和 POJO 对应起来,这两个 POJO 为 RedPacket 和 UserRedPacket,实现类序列化接口。

红包信息

package com.artisan.redpacket.pojo;

import java.io.Serializable;
import java.sql.Timestamp;

/**
 * 
 * 
 * @ClassName: RedPacket
 * 
 * @Description: 红包表对应的实体类,可序列化
 * 
 * @author: Mr.Yang
 * 
 * @date: 2018年10月8日 下午3:42:58
 */
public class RedPacket implements Serializable {

	private static final long serialVersionUID = 9036484563091364939L;
	// 红包编号
	private Long id;
	// 发红包的用户id
	private Long userId;
	// 红包金额
	private Double amount;
	// 发红包日期
	private Timestamp sendDate;
	// 红包总数
	private Integer total;
	// 单个红包的金额
	private Double unitAmount;
	// 红包剩余个数
	private Integer stock;
	// 版本(为后续扩展用)
	private Integer version;
	// 备注
	private String note;
	// 省略set/get
}

抢红包信息

package com.artisan.redpacket.pojo;

import java.io.Serializable;
import java.sql.Timestamp;

/**
 * 
 * 
 * @ClassName: UserRedPacket
 * 
 * @Description: 用户抢红包表
 * 
 * @author: Mr.Yang
 * 
 * @date: 2018年10月8日 下午3:47:40
 */
public class UserRedPacket implements Serializable {

	private static final long serialVersionUID = 7049215937937620886L;

	// 用户红包id
	private Long id;
	// 红包id
	private Long redPacketId;
	// 抢红包的用户的id
	private Long userId;
	// 抢红包金额
	private Double amount;
	// 抢红包时间
	private Timestamp grabTime;
	// 备注
	private String note;
	// 省略set/get
}


Dao层实现

MyBatis Dao接口类及对应的Mapper文件

使用 MyBatis 开发,先来完成大红包信息的查询先来定义一个 DAO 对象

package com.artisan.redpacket.dao;

import org.springframework.stereotype.Repository;

import com.artisan.redpacket.pojo.RedPacket;


@Repository
public interface RedPacketDao {
	
	/**
	 * 获取红包信息.
	 * @param id --红包id
	 * @return 红包具体信息
	 */
	public RedPacket getRedPacket(Long id);
	
	/**
	 * 扣减抢红包数.
	 * @param id -- 红包id
	 * @return 更新记录条数
	 */
	public int decreaseRedPacket(Long id);
	
	
}

其中的两个方法 , 一个是查询红包,另一个是扣减红包库存。

抢红包的逻辑是,先查询红包的信息,看其是否拥有存量可以扣减。如果有存量,那么可以扣减它,否则就不扣减。

接着将对应的Mapper映射文件编写一下

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
  "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.artisan.redpacket.dao.RedPacketDao">

	<!-- 查询红包具体信息 -->
	<select id="getRedPacket" parameterType="long"
		resultType="com.artisan.redpacket.pojo.RedPacket">
		select id, user_id as userId, amount, send_date as
		sendDate, total,
		unit_amount as unitAmount, stock, version, note from
		T_RED_PACKET
		where id = #{id}
	</select>

	<!-- 扣减抢红包库存 -->
	<update id="decreaseRedPacket">
		update T_RED_PACKET set stock = stock - 1 where id =
		#{id}
	</update>


</mapper>

这里getRedPacket并没有加锁这类动作,目的是为了演示超发红包的情况.

然后是抢红包的设计了 ,先来定义插入抢红包的 DAO ,紧接着是Mapper映射文件

package com.artisan.redpacket.dao;

import org.springframework.stereotype.Repository;

import com.artisan.redpacket.pojo.UserRedPacket;

@Repository
public interface UserRedPacketDao {

	/**
	 * 插入抢红包信息.
	 * @param userRedPacket ——抢红包信息
	 * @return 影响记录数.
	 */
	public int grapRedPacket(UserRedPacket  userRedPacket);
}


<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
  PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
  "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.artisan.redpacket.dao.UserRedPacketDao">
    <!-- 插入抢红包信息 -->
    <insert id="grapRedPacket" useGeneratedKeys="true" 
    keyProperty="id" parameterType="com.artisan.redpacket.pojo.UserRedPacket">
	    insert into T_USER_RED_PACKET( red_packet_id, user_id, amount, grab_time, note)
	    values (#{redPacketId}, #{userId}, #{amount}, now(), #{note}) 
    </insert>
</mapper>

这里使用了 useGeneratedKeys 和 keyProperty,这就意味着会返回数据库生成的主键信息,这样就可以拿到插入记录的主键了 , 关于 DAO 层就基本完成了。别忘了单元测试!!!


Service层实现

接下来定义两个 Service 层接口,分别是 UserRedPacketService和RedPacketService

package com.artisan.redpacket.service;

import com.artisan.redpacket.pojo.RedPacket;


public interface RedPacketService {
	
	/**
	 * 获取红包
	 * @param id ——编号
	 * @return 红包信息
	 */
	public RedPacket getRedPacket(Long id);

	/**
	 * 扣减红包
	 * @param id——编号
	 * @return 影响条数.
	 */
	public int decreaseRedPacket(Long id);
	
}

package com.artisan.redpacket.service;

public interface UserRedPacketService {
	
	/**
	 * 保存抢红包信息.
	 * @param redPacketId 红包编号
	 * @param userId 抢红包用户编号
	 * @return 影响记录数.
	 */
	public int grapRedPacket(Long redPacketId, Long userId);
	
}


实现类如下:

package com.artisan.redpacket.service.impl;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

import com.artisan.redpacket.dao.RedPacketDao;
import com.artisan.redpacket.pojo.RedPacket;
import com.artisan.redpacket.service.RedPacketService;

@Service
public class RedPacketServiceImpl implements RedPacketService {
	
	@Autowired
	private RedPacketDao redPacketDao;

	@Override
	@Transactional(isolation=Isolation.READ_COMMITTED, propagation = Propagation.REQUIRED)
	public RedPacket getRedPacket(Long id) {
		return redPacketDao.getRedPacket(id);
	}

	@Override
	@Transactional(isolation=Isolation.READ_COMMITTED, propagation = Propagation.REQUIRED)
	public int decreaseRedPacket(Long id) {
		return redPacketDao.decreaseRedPacket(id);
	}

}

配置了事务注解@Transactional , 让程序能够在事务中运行,以保证数据的一致性 , 这里采用的是读/写提交的隔离级别 , 之所以不采用更高的级别, 主要是提高数据库的并发能力,而对于传播行为则采用 Propagation.REQUIRED,这样调用这个方法的时候,如果没有事务则会创建事务, 如果有事务则沿用当前事务。

实现 UserRedPacketService 接口的方法 grapRedPacket,它是核心的接口方法

package com.artisan.redpacket.service.impl;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

import com.artisan.redpacket.dao.RedPacketDao;
import com.artisan.redpacket.dao.UserRedPacketDao;
import com.artisan.redpacket.pojo.RedPacket;
import com.artisan.redpacket.pojo.UserRedPacket;
import com.artisan.redpacket.service.UserRedPacketService;

@Service
public class UserRedPacketServiceImpl implements UserRedPacketService {
	
	// private Logger logger =
	// LoggerFactory.getLogger(UserRedPacketServiceImpl.class);
	
	@Autowired
	private UserRedPacketDao userRedPacketDao;

	@Autowired
	private RedPacketDao redPacketDao;

	// 失败
	private static final int FAILED = 0;

	@Override
	@Transactional(isolation = Isolation.READ_COMMITTED, propagation = Propagation.REQUIRED)
	public int grapRedPacket(Long redPacketId, Long userId) {
		// 获取红包信息
		RedPacket redPacket = redPacketDao.getRedPacket(redPacketId);
		int leftRedPacket = redPacket.getStock();
		// 当前小红包库存大于0
		if (leftRedPacket > 0) {
			redPacketDao.decreaseRedPacket(redPacketId);
			// logger.info("剩余Stock数量:{}", leftRedPacket);
			// 生成抢红包信息
			UserRedPacket userRedPacket = new UserRedPacket();
			userRedPacket.setRedPacketId(redPacketId);
			userRedPacket.setUserId(userId);
			userRedPacket.setAmount(redPacket.getUnitAmount());
			userRedPacket.setNote("redpacket- " + redPacketId);
			// 插入抢红包信息
			int result = userRedPacketDao.grapRedPacket(userRedPacket);
			return result;
		}
		// logger.info("没有红包啦.....剩余Stock数量:{}", leftRedPacket);
		// 失败返回
		return FAILED;
	}


}


grapRedPacket 方法的逻辑是首先获取红包信息,如果发现红包库存大于 0,则说明还有红包可抢,抢夺红包并生成抢红包的信息将其保存到数据库中。要注意的是,数据库事务方面的设置,代码中使用注解@Transactional , 说明它会在一个事务中运行,这样就能够保证所有的操作都是在一个事务中完成的。在高并发中会发生超发的现象,后面会看到超发的实际测试。


使用全注解搭建SSM 开发环境

我们这里将使用注解的方式来完成 SSM 开发的环境,可以通过继承 AbstractAnnotationConfigDispatcherServletlnitfal izer 去配置其他内 容,因此首先来配置 WebApplnitialize

package com.artisan.redpacket.config;

import javax.servlet.MultipartConfigElement;
import javax.servlet.ServletRegistration.Dynamic;

import org.springframework.web.servlet.support.AbstractAnnotationConfigDispatcherServletInitializer;

public class WebAppInitializer extends AbstractAnnotationConfigDispatcherServletInitializer {

	// Spring IoC环境配置
	@Override
	protected Class<?>[] getRootConfigClasses() {
		// 配置Spring IoC资源
		return new Class<?>[] { RootConfig.class };
	}

	// DispatcherServlet环境配置
	@Override
	protected Class<?>[] getServletConfigClasses() {
		// 加载Java配置类
		return new Class<?>[] { WebConfig.class };
	}

	// DispatchServlet拦截请求配置
	@Override
	protected String[] getServletMappings() {
		return new String[] { "*.do" };
	}

	/**
	 * @param dynamic
	 *            Servlet上传文件配置.
	 */
	@Override
	protected void customizeRegistration(Dynamic dynamic) {
		// 配置上传文件路径
		String filepath = "D:/";
		// 5MB
		Long singleMax = (long) (5 * Math.pow(2, 20));
		// 10MB
		Long totalMax = (long) (10 * Math.pow(2, 20));
		// 设置上传文件配置
		dynamic.setMultipartConfig(new MultipartConfigElement(filepath, singleMax, totalMax, 0));
	}

}


WebAppInitializer继承了 AbstractAnnotationConfigDispatcherServletlnitializer, 重写了 3 个抽象方法 , 并且覆盖了父类的 customizeRegistration 方法 , 作为上传文件的配置。

  • getRootConfigClasses 是一个配置 Spring IoC 容器的上下文配置 , 此配置在代码中将会由类 RootConfig 完成
  • getServletConfigClasses 配置 DispatcherServlet 上下文配置,将会由WebConfig完成
  • getServletMappings 配置 DispatcherServlet 拦截 内 容 , 这里设置的是拦截所有以 .do 结尾的请求

通过这 3 个方法就可以配置 Web 工程中 的 Spring IoC 资源和 DispatcherServlet 的配置内容 , 首先是配置 Spring IoC 容器,配置类 RootConfig

package com.artisan.redpacket.config;

import java.util.Properties;

import javax.sql.DataSource;

import org.apache.commons.dbcp2.BasicDataSourceFactory;
import org.mybatis.spring.SqlSessionFactoryBean;
import org.mybatis.spring.mapper.MapperScannerConfigurer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.ComponentScan.Filter;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.FilterType;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;
import org.springframework.jdbc.datasource.DataSourceTransactionManager;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;
import org.springframework.transaction.annotation.TransactionManagementConfigurer;

@Configuration
//定义Spring 扫描的包
@ComponentScan(value= "com.*", includeFilters= {@Filter(type = FilterType.ANNOTATION, value ={Service.class})})
//使用事务驱动管理器
@EnableTransactionManagement
//实现接口TransactionManagementConfigurer,这样可以配置注解驱动事务
public class RootConfig implements TransactionManagementConfigurer {
	
	private DataSource dataSource = null;
	
	/**
	 * 配置数据库.
	 * @return 数据连接池
	 */
	@Bean(name = "dataSource")
	public DataSource initDataSource() {
		if (dataSource != null) {
			return dataSource;
		}
		try {
			Properties props = new Properties();
			props.load(RootConfig.class.getClassLoader().getResourceAsStream("jdbc.properties"));
			props.setProperty("driverClassName", props.getProperty("jdbc.driver"));
			props.setProperty("url", props.getProperty("jdbc.url"));
			props.setProperty("username", props.getProperty("jdbc.username"));
			props.setProperty("password", props.getProperty("jdbc.password"));
			dataSource = BasicDataSourceFactory.createDataSource(props);
		} catch (Exception e) {
			e.printStackTrace();
		}
		return dataSource;
	}
	
	/***
	 * 配置SqlSessionFactoryBean
	 * @return SqlSessionFactoryBean
	 */
	@Bean(name="sqlSessionFactory")
	public SqlSessionFactoryBean initSqlSessionFactory() {
		SqlSessionFactoryBean sqlSessionFactory = new SqlSessionFactoryBean();
		sqlSessionFactory.setDataSource(initDataSource());
		//配置MyBatis配置文件
		Resource resource = new ClassPathResource("mybatis/mybatis-config.xml");
		sqlSessionFactory.setConfigLocation(resource);
		return sqlSessionFactory;
	}
	
	/***
	 * 通过自动扫描,发现MyBatis Mapper接口
	 * @return Mapper扫描器
	 */
	@Bean 
	public MapperScannerConfigurer initMapperScannerConfigurer() {
		MapperScannerConfigurer msc = new MapperScannerConfigurer();
		msc.setBasePackage("com.*");
		msc.setSqlSessionFactoryBeanName("sqlSessionFactory");
		msc.setAnnotationClass(Repository.class);
		return msc;
	}
	
	
	/**
	 * 实现接口方法,注册注解事务,当@Transactional 使用的时候产生数据库事务 
	 */
	@Override
	@Bean(name="annotationDrivenTransactionManager")
	public PlatformTransactionManager annotationDrivenTransactionManager() {
		DataSourceTransactionManager transactionManager = 
           new DataSourceTransactionManager();
		transactionManager.setDataSource(initDataSource());
		return transactionManager;
	}
	
	

}

这个类和之前论述的有所不同 , 它标注了注解@EnableTransactionManagement , 实现了接口 TransactionManagementConfigurer, 这样的配置是为了实现注解式的事务 , 将来可以通过注解@Transactional 配 置数据库事务。

它有一 个方法annotationDrivenTransactionManager这需要将一个事务管理器返回给它就可以了

除了配置数据库事务外 ,还配置了数据源 SqISessionFactoryBean 和 MyBatis 的扫描类 , 并把 MyBatis的扫描类通过注解@Repository 和包名"com.*"限定。这样 MyBatis 就会通过 Spring 的机制找到对应的接 口和配置 , Spring 会自动把对应的接口装配到 IoC 容器中 。

有了 Spring IoC 容器后 , 还需要配置 DispatcherServlet 上下文

package com.artisan.redpacket.config;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Executor;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.ComponentScan.Filter;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.FilterType;
import org.springframework.http.MediaType;
import org.springframework.http.converter.json.MappingJackson2HttpMessageConverter;
import org.springframework.scheduling.annotation.AsyncConfigurerSupport;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Controller;
import org.springframework.web.servlet.HandlerAdapter;
import org.springframework.web.servlet.ViewResolver;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
//定义Spring MVC扫描的包
@ComponentScan(value="com.*", includeFilters= {@Filter(type = FilterType.ANNOTATION, value = Controller.class)})
//启动Spring MVC配置
@EnableWebMvc
public class WebConfig{ 

	/***
	 * 通过注解 @Bean 初始化视图解析器
	 * @return ViewResolver 视图解析器
	 */
	@Bean(name="internalResourceViewResolver")
	public ViewResolver initViewResolver() {
		InternalResourceViewResolver viewResolver =new InternalResourceViewResolver();
		viewResolver.setPrefix("/WEB-INF/jsp/");
		viewResolver.setSuffix(".jsp");
		return viewResolver;
	}
	
	/**
	 * 初始化RequestMappingHandlerAdapter,并加载Http的Json转换器
	 * @return  RequestMappingHandlerAdapter 对象
	 */
	@Bean(name="requestMappingHandlerAdapter") 
	public HandlerAdapter initRequestMappingHandlerAdapter() {
		//创建RequestMappingHandlerAdapter适配器
		RequestMappingHandlerAdapter rmhd = new RequestMappingHandlerAdapter();
		//HTTP JSON转换器
		MappingJackson2HttpMessageConverter  jsonConverter 
	        = new MappingJackson2HttpMessageConverter();
		//MappingJackson2HttpMessageConverter接收JSON类型消息的转换
		MediaType mediaType = MediaType.APPLICATION_JSON_UTF8;
		List<MediaType> mediaTypes = new ArrayList<MediaType>();
		mediaTypes.add(mediaType);
		//加入转换器的支持类型
		jsonConverter.setSupportedMediaTypes(mediaTypes);
		//往适配器加入json转换器
		rmhd.getMessageConverters().add(jsonConverter);
		return rmhd;
	}
}

这里配置了一个视图解析器 , 通过它找到对应 JSP 文件,然后使用数据模型进行渲染,采用自定义 创 建 RequestMappingHandlerAdapter , 为了让它能够支持 JSON 格式(@ResponseBody ) 的转换,所以需要创建一个关于对象和 JSON 的转换消息类MappingJackson2HttpMessageConverter

创建它之后,把它注册给 RequestMappingHandlerAdapter对象 , 这样当控制器遇到注解@ResponseBody 的时候就知道采用 JSON 消息类型进行应答 , 那么在控制器完成逻辑后 , 由处理器将其和消息转换类型做匹配,找到MappingJackson2HttpMessageConverter 类对象,从而转变为 JSON 数据。

通过上面的 3 个类就搭建好了 Spring MVC 和 Spring 的开发环境,但是没有完成对MyBatis 配置文件. 从RootConfig#initSqlSessionFactory()方法中看到加载的MyBatis 的配置文件为"mybatis/mybatis-config.xml",该配置文件主要是加载mapper映射文件

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
  PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
  "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
    <mappers>
        <mapper resource="mapper/UserRedPacket.xml"/>
        <mapper resource="mapper/RedPacket.xml"/>
    </mappers>
</configuration>

记得进行Service层的单元测试, 关于后台的逻辑就已经完成 , 接下来继续将Controller层实现,进行页面测试吧。


Controller层

package com.artisan.redpacket.controller;

import java.util.HashMap;
import java.util.Map;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;

import com.artisan.redpacket.service.UserRedPacketService;

@Controller
@RequestMapping("/userRedPacket")
public class UserRedPacketController {

	@Autowired
	private UserRedPacketService userRedPacketService;

	@RequestMapping(value = "/grapRedPacket")
	@ResponseBody
	public Map<String, Object> grapRedPacket(Long redPacketId, Long userId) {
		// 抢红包
		int result = userRedPacketService.grapRedPacket(redPacketId, userId);
		Map<String, Object> retMap = new HashMap<String, Object>();
		boolean flag = result > 0;
		retMap.put("success", flag);
		retMap.put("message", flag ? "抢红包成功" : "抢红包失败");
		return retMap;
	}	
}

对于控制器而言 , 它将抢夺一个红包 , 并且将一个 Map返回,由于使用了注解@ResponseBody 标注方法,所以最后它会转变为一个 JSON 返回给前端请求,编写 JSP 对其进行测试


View层

grap.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"
         pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
    <head>
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
        <title>参数</title>
        <!-- 加载Query文件-->
        <script type="text/javascript" src="https://code.jquery.com/jquery-3.2.0.js">
        </script>
        <script type="text/javascript">
            $(document).ready(function () {
          	  //模拟30000个异步请求,进行并发
              var max = 30000;
              for (var i = 1; i <= max; i++) {
                  //jQuery的post请求,请注意这是异步请求
                  $.post({
                      //请求抢id为1的红包
                      //根据自己请求修改对应的url和大红包编号
                      url: "./userRedPacket/grapRedPacket.do?redPacketId=1&userId=" + i,
                      //成功后的方法
                      success: function (result) {
                      }
                  });
              }
          });
        </script>
    </head>
    <body>
    </body>
</html>

这里我们使用了 JavaScript 去模拟 3 万人同时抢红包的场景 . 请使用 Firefox进行测试(Chrome老是丢失请求,IE慢)

JavaScript 的 post 请求是一个异步请求,所以这是一个高并发的场景,它将抢夺 id 为1的红包 , 依据之前 SQL 的插入 , 这是一个 20 万元的红包 , 一共有两万个,那么在这样高并发场景下会有什么问题发生呢?

注意两个点 : 一个是数据的一致性,另外一个是性能问题


运行测试

启动tomcat,前端访问 http://localhost:8080/ssm_redpacket/grap.jsp

如果有日志,记得调成error级别,或者不打印日志。

我这里的mysql是部署在虚拟机中,CPU和内存的配置都不高。 内存1G。


超量发送的BUG验证

模拟高并发场景的抢红包后,两个维度进行统计

  • 1:数据一致性
  • 2: 性能

抢红包一致性统计:

SELECT
	a.id,
	a.amount,
	a.stock
FROM
	T_RED_PACKET a
WHERE
	a.id = 1
UNION ALL
	SELECT
		max(b.user_id),
		sum(b.amount),
		count(*)
	FROM
		T_USER_RED_PACKET b
	WHERE
		b.red_packet_id = 1;

在这里插入图片描述

使用 SQL 去查询红包的库存、发放红包的总个数、总金额,我们发现了错误,红包总额为 20 万元,两万个小红包,结果发放了 200020元的红包, 20002 个红包。现有库存为-2,超出了之前的限定,这就是高并发的超发现象,这是一个错误的逻辑 。


抢红包性能统计:

SELECT
	(
		UNIX_TIMESTAMP(max(a.grab_time)) - UNIX_TIMESTAMP(min(a.grab_time)) 
	)  AS lastTime
FROM
	T_USER_RED_PACKET a;

在这里插入图片描述

一共使用了 190 秒的时间,完成 20002 个红包的抢夺,性能一般。。。但是逻辑上存在超发错误,还需要解决超发问题 。


超发问题解决思路

超发现象是由多线程下数据不一致造成的,对于此类问题,如果采用数据库方案的话,主要通过悲观锁和乐观锁来处理,这两种方法的性能是不一样的。

接下来我们分别使用悲观锁、乐观锁、Redis+lua的方式来解决这个超发问题。


代码

https://github.com/yangshangwei/ssm_redpacket

阅读更多

扫码向博主提问

小小工匠

博客专家

show me the code
  • 擅长领域:
  • Java
  • Android
  • DataBase
  • OS
  • 开源软件
去开通我的Chat快问
换一批

没有更多推荐了,返回首页