基本思想:
通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后分别对这两部分记录继续排序,最终达到整个序列有序。
可以使用递归树来描述算法的时间复杂度,最好情况下,标杆为序列中的中间数,最优时间复杂度为O(nlogn);最坏情况下,待排序序列为有序的,正序或逆序,递归树为一颗斜树,需要执行n-1次递归调用,第i次划分需要n-i次比较,时间复杂度为O(n2)。平均时间复杂度为O(nlogn)。
空间复杂度:
最好情况,递归树深度为logn,空间复杂度为O(logn);
最坏情况,需要进行n-1次递归调用,空间复杂度为O(n);
平均情况,空间复杂度为O(logn)。
#include <iostream>
#include <cstdlib>
//顺序表结构
#define MAXSIZE 10 //要排序数组个数最大值
typedef struct
{
int r[MAXSIZE + 1]; //存储要排序数组,r[0]作为哨兵或临时变量
int length; //记录顺序表长度
}SqList;
//交换函数
void swap(SqList* L, int i, int j)
{
int temp = L->r[i];
L->r[i] = L->r[j];
L->r[j] = temp;
}
int Partition(SqList *L, int low, int high)
{
int pivotkey;
pivotkey = L->r[low];
while (low < high)
{
while (low < high && L->r[high] >= pivotkey)
high--;
swap(L, low, high);
while (low < high && L->r[low] <= pivotkey)
low++;
swap(L, low, high);
}
return low; //返回标杆下标位置
}
void Qsort(SqList *L, int low, int high)
{
int pivot; //标杆下标
if (low < high)
{
pivot = Partition(L, low, high);
Qsort(L, low, pivot - 1);
Qsort(L, pivot + 1, high);
}
}
void QuickSort(SqList * L)
{
Qsort(L, 1, L->length);
}
void main()
{
SqList data;
int len = 10; //待排序列个数
srand((int)time_t(NULL));
data.r[0] = { 0 };
std::cout << "快排前的数列为:";
for (int i = 1; i <= len; ++i)
{
data.r[i] = rand() % 10 + 1;
std::cout << data.r[i] << ' ';
}
data.length = len;
//Qsort(&data, 1, len);
QuickSort( &data ); //快排算法
printf("\n");
std::cout << "快排后的数列为:";
for (int i = 1; i <= len; ++i)
{
std::cout << data.r[i] << ' ';
}
}