2025 年 10 大最佳 AI 代码审查工具及其工作原理

2025 年 10 大最佳 AI 代码审查工具及其工作原理

引言

本文将介绍 2025 年的 AI 代码审查工具,突出它们的关键特性、优势,并解释基于 AI 的代码审查如何提高代码质量。这些 AI 代码分析工具可以帮助开发者发现前沿解决方案,实现自动化的错误检测、性能优化和增强协作。

参考来源

关键要点

  • 代码审查工具通过机器学习和自然语言处理,自动分析和改进代码,增强错误检测、性能优化和风格一致性。
  • 这些工具使用数据驱动的方法(包括静态和动态分析)分析代码,以识别安全漏洞和性能瓶颈。它们不断从新的编码模式中学习,并提供实时、可操作的反馈。
  • AI 工具在代码审查中提供了更高的效率、一致性和可扩展性,同时自动化错误检测并建议优化。然而,挑战包括上下文限制、对技术的潜在依赖以及集成困难。

2025 年 10 大最佳 AI 代码审查工具

  1. GitHub Copilot
  2. CodeScene
  3. PullReview.ai
  4. Cursor
  5. PullRequest
  6. Replit
  7. OpenDevin
  8. CodeRabbit
  9. Amazon CodeWhisperer
  10. Bito AI

以下是每个工具的详细描述,包括其关键特性、优势和不足,以及价格信息。这将帮助您选择适合自己需求的最佳 AI 代码审查解决方案。

什么是 AI 代码审查?

使用人工智能进行代码分析是一个过程,涉及使用 AI 驱动的解决方案来检查和改进软件应用程序的代码。AI 工具可以与版本控制系统和开发环境集成。它们基于错误检测、性能优化和风格一致性来评估代码。

AI 代码审查如何工作?

1. 数据驱动的代码分析

AI 代码审查工具处理来自私有和公共代码存储库的数据集,这些存储库涵盖了不同的编程语言和框架。这个知识库使 AI 能够识别最佳编码实践并检测错误。

2. 用于代码评估的机器学习

机器学习模型分析代码的结构、语义和语法,并将其与行业实践和常见错误模式进行比较。这种分析有助于识别与安全性和效率相关的潜在问题。

3. 自动化建议和代码优化

由人工智能生成的反馈指出关键错误、安全漏洞和需要改进的地方。AI 工具建议优化的编码方法、替代方案,并确保符合最佳实践。

4. 持续学习和适应

AI 代码分析系统不断从新的编码模式和实际应用中学习。随着开发者提供更多数据,AI 模型提高了准确性,确保代码分析和建议保持最新。

代码分析的类型

AI 代码审查的几个关键方面有助于提高其有效性。

  • 静态代码分析
  • 动态代码分析
  • 基于规则的系统
  • 自然语言处理(NLP)
  • 大型语言模型(LLMs)

静态代码分析

静态代码分析在不执行代码的情况下检查代码,识别语法错误、编码标准违规和安全漏洞。这种方法对于大型和复杂的代码库非常有效。它扫描数千行代码,生成详细的报告。AI 算法使用这些信息来建议潜在的改进。

静态代码分析的工作原理
  1. 首先,开发者将源代码文件或特定的代码库提供给静态分析工具进行检查。
  2. 接下来是编译步骤。工具处理源代码,将其分解成更小的组件,通常表示为标记,以便于详细分析。
  3. 然后是解析。解析器将标记组织成抽象语法树(AST),表示代码的结构层次,使工具能够理解代码的组织。
  4. 在这个阶段,静态分析工具开始检查代码。根据使用的工具,工具执行分析技术,包括语法分析、数据流分析、控制流分析和安全漏洞分析。

动态代码分析

动态代码分析执行代码以观察其运行时行为。这种方法检测性能问题、运行时错误和在静态审查中可能不明显的低效。

这个过程有助于分析代码与外部系统的交互,使对 AI 驱动建议的理解更加全面。

动态代码分析的工作原理
  1. 软件在受控环境中执行,通常带有仪器来监控其行为。这种设置允许分析人员观察应用程序如何与系统资源交互、管理内存以及处理并发进程。
  2. 程序用各种输入进行测试,以模拟不同的使用场景。这种方法有助于发现可能仅在特定条件下出现的缺陷,确保更全面的测试。
  3. 在执行过程中,分析程序的多个方面,包括内存使用、性能指标和错误处理。
  4. 动态分析可以模拟真实世界的攻击,以识别静态分析可能遗漏的漏洞。
  5. 报告涉及记录分析结果的详细报告。

基于规则的系统

这些系统使用一组规则来分析代码并检测潜在问题。它们通过强制执行最佳实践和最小化错误,为代码评估建立了可靠的 foundation。

一个广泛使用的例子是 linter,一种设计用来扫描代码中的语法错误和偏离规定编码风格指南的工具。基于规则的系统通过自动检测不一致,帮助开发者维护高质量、标准化的代码。

基于规则的系统的工作原理

基于规则的系统的功能遵循一个结构化的过程,确保准确的决策和分析。它从数据输入开始,系统从用户或外部来源接收信息。

接下来,推理引擎将此输入与存储在其知识库中的预定义规则进行匹配,识别哪些条件与提供的数据一致。

一旦匹配到规则,系统执行相应的操作,这可能涉及更新内部内存、推导新见解或产生相关输出。

当多个规则同时被触发时,系统使用冲突解决策略来确定优先级,通常根据特定性或输入顺序选择规则。

最后,系统生成输出,如决策、建议或其他类型的响应,包括警告、解释等。

自然语言处理(NLP)模型

这些模型在广泛的代码片段、存储库和文档数据集上进行训练。NLP 模型分析代码结构、语法和逻辑,识别可能影响性能、安全性或可维护性的问题。这些模型在 AI 驱动的代码审查中起着核心作用。

此外,NLP 模型通过纳入编程专家的反馈和更正来进化,提高其准确性。

自然语言处理(NLP)模型的工作原理

这个过程从收集大量来自不同来源的代码开始。这些原始代码然后经过预处理,将其分解成有意义的元素,去除注释和不必要的空白,并将代码结构规范化为标准形式。

预处理后的代码被转换成数值表示,这些表示捕捉代码的结构和语义关系。诸如抽象语法树(ASTs)和控制流图(CFGs)等技术表示代码的层次和逻辑结构,便于深入分析。

使用这些表示,基于深度学习架构(如 transformers)的机器学习模型接受训练,以识别代码中的模式和异常。这些模型学习预测序列中的下一个标记,识别偏离标准实践的代码,并检测潜在的错误或漏洞。

一旦训练完成,NLP 模型可以分析新的代码提交,将其与已学习的模式进行比较,以识别语法错误、安全漏洞和性能瓶颈。它们还可以提供代码优化建议。

大型语言模型(LLMs)

与传统机器学习技术相比,这些模型对代码结构和逻辑有更深入的理解,能够检测更微妙的异常和错误。

LLMs 的一个关键优势是它们能够生成明确的、类似人类的评论和解释,使代码审查更易于理解。这对于仍在学习最佳实践的初级开发者尤其有益。

大型语言模型(LLMs)的工作原理

LLMs 在广泛的编程相关数据上进行训练,包括开源存储库和技术文档。数据在预处理过程中被清理、分词并格式化为结构化数据集,以提高学习效率。

使用基于 transformers 的架构,LLMs 在大规模数据集上接受训练。这个过程涉及通过预测序列中的下一个标记、识别模式和理解编程逻辑来学习代码语法、结构和最佳实践。

在一般训练之后,LLMs 使用特定领域的数据集进行微调,专注于提高代码完成、错误检测和优化的准确性。

在审查代码时,LLMs 利用诸如抽象语法树(ASTs)和控制流图(CFGs)等技术分析语法、结构和逻辑。

根据其知识,LLM 提供智能建议,例如优化代码效率和建议替代实现。

LLMs 通过纳入开发者的反馈并对其不断演变的代码库进行持续重新训练来提高性能。

使用 AI 代码审查工具的优势

高质量的代码在软件开发中至关重要。传统的代码审查流程耗时且容易出错。将人工智能(AI)集成到代码审查工作流中,为提高效率、一致性和整体软件质量提供了解决方案。

  1. 效率:这些工具通过自动化重复任务来加速审查过程。它们能够快速分析大型代码库,识别潜在问题,并提供实时反馈。
  2. 一致性:代码审查质量因审查者的经验和注意力而异。基于 AI 的工具提供了一种更高效和一致的方法,对每一段代码应用相同的评估标准。
  3. 自动化错误检测:这些工具可以快速分析大型代码库,识别潜在问题,如错误、安全漏洞和对编码标准的遵循。通过在开发过程的早期识别问题,它们有助于保持代码质量,增强安全性,并减少调试时间。
  4. 重构建议:这些工具建议改进设计模式和重构机会,以优化性能和可读性。
  5. 简化的调试:在开发周期的早期标记错误,减少进入生产的错误数量。
  6. 可扩展性:随着项目的发展,代码量会增加。AI 工具可以快速扩展以处理大量代码,而无需显著增加手动审查工作量。

使用 AI 代码审查工具的劣势

  1. 上下文理解有限:虽然 AI 工具可以识别语法错误和格式问题,但它们可能难以理解某些代码决策的上下文或意图,可能会遗漏细微的错误或逻辑缺陷。
  2. 对技术的依赖:过度依赖 AI 工具可能导致开发者的手动代码审查技能下降。随着时间的推移,这可能会降低他们发现 AI 可能遗漏的问题的能力。
  3. 设置和集成挑战:实施 AI 代码审查工具需要大量时间和资源。将这些工具集成到现有工作流中可能会很困难,尤其是在遗留系统中。
  4. 误报和漏报:AI 工具并非无懈可击;它们有时会将有效代码标记为有问题(误报)或忽略实际问题(漏报),导致困惑和浪费精力。
  5. 成本考虑:虽然有许多免费和开源选项,但高级 AI 代码审查工具可能很昂贵。组织必须权衡成本与潜在收益。
  6. 安全性:AI 代码审查工具通常需要访问源代码,引发对数据安全和知识产权保护的担忧,特别是对于专有或敏感项目。

10 大最佳 AI 代码审查工具

1. GitHub Copilot

GitHub Copilot 利用 AI 提供实时代码建议和补全,增强开发者在 IDE 中的生产力并确保代码质量。虽然 GitHub Copilot 本身并不直接支持 pull request 生命周期内的代码审查,但它帮助开发者编写更好的代码,并在 IDE 中提供聊天功能。
github copilot
特性

  • 通过分析代码逻辑,Copilot 可以提出覆盖典型场景的测试用例,减少手动创建测试的工作量。
  • 提供与项目架构相关的代码块。
  • Copilot Chat 功能允许进行互动讨论,提供澄清或建议替代代码解决方案。
  • 支持多种编程语言,包括 Python、JavaScript、Ruby 和 Go。
  • 直接与 Visual Studio Code 和 GitHub 集成。

优势

  • 加快开发进程。在处理大型框架时尤其有效。
  • 在人类审查之前发现潜在问题。
  • 减少创建和维护全面测试覆盖的工作量。

不足

  • 我发现建议有时可能与复杂或复杂的代码结构不一致。
  • 对于大型团队来说,价格可能会很高。
  • 在处理高度抽象或复杂的代码 问题时,缺乏细致的理解。
  • 有时,将问题的上下文与之前的问题有效关联会很困难,这可能导致回答显得脱节或缺乏连贯性。

价格

  • 免费计划:是的。
  • 团队计划:每月每位用户 4 美元。
  • 企业计划:每月每位用户 21 美元。

如何开始

  1. 访问 GitHub Copilot 页面。
  2. 选择合适的计划并订阅。
  3. 在首选的代码编辑器中安装 GitHub Copilot 扩展。
  4. 开始编码以接收 AI 驱动的建议。

2. CodeScene

CodeScene 自动化代码审查,并与 pull request 无缝集成,作为质量门和早期反馈循环。它有助于随着时间的推移保持代码质量,提高复杂系统中的可读性和可维护性。CodeScene 通过检测问题并提供可操作的建议,指导您将代码与项目标准对齐。
CodeScene

特性

  • CodeScene 在 pull request 内自动化代码审查,提供即时反馈,指出代码质量问题、潜在问题,并建议改进。
  • 它提供对代码健康状况、趋势、依赖关系、复杂性和技术债务的深入分析,帮助团队确定改进的优先级并有效管理代码质量。
  • CodeScene 与 pull request 集成,创建即时反馈循环,以增强代码质量并提醒团队代码健康状况下降。
  • 它通过知识共享、减少瓶颈和促进更好的协作来提高团队效率,这有助于降低风险和依赖关系。

优势

  • CodeScene 通过结合代码质量指标和行为分析,提供了对代码和团队结构的深刻见解。
  • 该平台提供可操作的建议,帮助团队优先处理技术债务缓解并提高代码可维护性。
  • 它支持 25 种以上的编程语言,使其适用于多样化的开发环境。
  • Code Health 度量标准已验证与业务关键变量相关,如开发速度和缺陷密度。

不足

  • 我发现对于新用户来说,广泛的功能可能会让人感到不知所措,直到他们习惯为止。
  • 提供的大量数据和指标可能会让初学者感到不知所措。
  • 该工具的广泛功能在小型项目中可能会被低估,可能会限制其在小型团队中的感知价值。

价格

  • 免费计划:试用版。
  • 标准计划
    • 每月:20 欧元。
    • 每年:每月 18 欧元(节省 10%)。
  • 专业计划
    • 每月:30 欧元。
    • 每年:每月 27 欧元(节省 10%)。
  • 企业计划
    • 每月/每年:自定义价格。

如何开始

  1. CodeScene 网站上注册。
  2. 选择计划并订阅。
  3. 连接代码存储库以进行分析。
  4. 查看生成的见解并将其集成到开发工作流中。

3. PullReview.ai

PullReview 是一个较新的 AI 驱动的代码审查工具,旨在自动化和增强审查过程。它直接与 GitHub 集成,帮助开发者提高代码质量,检测潜在问题,并确保遵循最佳实践。此外,SitePoint 使用 PullReview,这证明了该工具的有效性。
PullReview
特性

  • 该工具提供自动化的、基于上下文的代码改进建议。
  • 它在部署前检测漏洞和安全缺陷。
  • 允许团队强制执行编码标准和最佳实践。
  • 通过自动化的审查摘要和 pull request 洞见增强工作流。
  • 它与 GitHub 存储库无缝协作,以实现实时的 AI 辅助代码分析。

优势

  • 自动化代码审查,节省开发者时间。
  • 识别安全漏洞和最佳实践违规。
  • 提供上下文洞见,以提高代码质量,并确保更可靠、容错的代码,从而提高应用程序的稳定性。
  • 对于基本的静态分析和捕捉重复性错误非常有效。

不足

  • 仅限于 GitHub 集成(目前不支持 GitLab 或 Bitbucket)。
  • 它可能会误解上下文,导致误导性或不必要的警告。

价格

  • 免费试用:提供 3 天免费试用。
  • 订阅:每月 10 美元。

如何开始

  1. 访问 PullReview.ai 页面并创建账户。
  2. 选择合适的计划并订阅。
  3. 授予对存储库的访问权限以进行自动审查。
  4. 选择要分析的项目。
  5. 启动 pull request 的自动化代码审查。
  6. 应用 AI 生成的修复程序,高效提高代码质量。

4. Cursor

Cursor 是一个 AI 驱动的代码编辑器,旨在通过提供实时建议和错误检测来提高开发者的生产力。它将 AI 辅助功能直接集成到编码环境中。支持多种编程语言和版本控制系统,Cursor 适应用户的编码风格,提供相关建议。
Cursor
特性

  • 允许开发者与 AI 交互以获取代码解释、调试帮助等。
  • 分析开发者与代码的交互以识别潜在问题。
  • 提供具体步骤以增强代码结构和可维护性。
  • CI/CD 管道集成。在现有工作流中工作,在 pull request 期间提供实时反馈。
  • 提供详细的执行指标以优化代码性能。
  • 分析编码行为以发现低效。

优势

  • 识别瓶颈并建议改进。
  • 无缝的 CI/CD 集成。在现有的开发管道中工作。
  • 帮助提高整体代码质量。

不足

  • 可能会引入开销。它可能会影响 CI/CD 构建时间。
  • 详细的分析可能会让新接触性能优化的开发者感到不知所措。
  • 自动化建议会标记非问题。
  • 它更适合大型代码库。

价格

  • 免费计划:是的。
  • 专业计划
    • 每月:20 美元。
    • 每年:192 美元(节省 20%)。
  • 商业计划
    • 每月:每位用户 40 美元。
    • 每年:每位用户 384 美元(节省 20%)。

如何开始

  1. 访问 Cursor 的网站。
  2. 选择你的计划。
  3. 下载并安装 Cursor 编辑器。
  4. 在 Cursor 中打开一个项目并开始使用 AI 辅助建议进行编码。

5. PullRequest

PullRequest 是一个代码审查服务,将 AI 技术与专家人工审查者相结合,以提高代码质量、安全性和性能。该平台适用于各种规模的开发团队,无缝集成 GitHub、GitLab、Azure DevOps 和 Bitbucket Cloud,以提供全面的代码分析。它通过提供详细的反馈,减少工程周期时间,并在部署前确保高代码标准,从而加速开发过程。
PullRequest

特性

  • 识别安全风险、性能问题和代码质量关注点。
  • 与 GitHub、GitLab、Azure DevOps 和 Bitbucket Cloud 集成。
  • 大多数审查在 90 分钟内完成,减少工程周期时间。
  • 提供年度安全报告和合规性评估。
  • 可操作的指标、仪表板和每周总结帮助团队改进开发实践。

优势

  • 通过快速反馈审查减少工程周期时间。
  • 提供有价值的指标和见解,用于跟踪开发改进。
  • 无缝集成到现有的开发工作流中。

不足

  • 对于小型团队或个人开发者来说,价格可能会很高。
  • AI 驱动的建议仍需手动验证。

价格

  • 免费计划:提供团队计划的两周试用。
  • 团队计划:每月每位开发者 129 美元。
  • 企业计划:提供自定义解决方案。

如何开始

  1. 在 PullRequest 上创建账户。
  2. 连接 GitHub、GitLab、Azure DevOps 或 Bitbucket Cloud 存储库。
  3. 通过平台请求代码审查。
  4. AI 和高级工程师分析并提供建议。
  5. 实施建议的改进,以获得更安全、高效的代码库。

6. Replit

Replit 是一个基于云的集成开发环境(IDE),使开发者能够直接从浏览器编写、协作和部署代码。Replit 旨在让编码更易于访问和高效,提供了一系列 AI 驱动的工具和实时协作功能,适合初学者和有经验的开发者。
Replit

特性

  • Replit 集成了高级 AI 功能,包括 Replit Agent,它协助生成、完成和调试代码。
  • 使用 Replit 的云工作区,无需本地设置或安装。开发者可以使用互联网连接的任何设备访问他们的项目,确保灵活性和便利性。
  • Replit 提供一键式部署选项,使用户能够直接从 IDE 主机和部署应用程序。
  • Replit 支持广泛的编程语言,包括 Python、JavaScript、Java、C++ 等。

优势

  • Replit 的直观设计使其易于初学者访问,减少了与传统 IDE 相关的学习曲线。
  • 该平台无需安装,允许用户立即从浏览器开始编码。
  • 实时编码会话和内置聊天功能促进了有效的团队合作和沟通。

不足

  • 作为一个基于云的平台,Replit 需要稳定的互联网连接才能访问和使用。
  • Replit 可能缺乏大型企业级应用程序所需的某些高级功能。

价格

  • 免费计划:是的。
  • Replit Core
    • 每月:25 美元。
    • 每年:15 美元每月(节省 120 美元)。
  • 团队
    • 每月:每位用户 40 美元。
    • 每年:年度定价即将推出(节省 120 美元)。
  • 企业
    • 每月:自定义定价。
    • 每年:自定义定价(节省 120 美元)。

如何开始

  1. 在 Replit 上创建账户。
  2. 选择计划。
  3. 选择编程语言并设置环境。
  4. 直接在浏览器中编写和优化代码,使用 AI 辅助功能,并邀请协作者进行实时编码。
  5. 一旦项目准备就绪,使用 Replit 的托管选项部署并与其他用户共享。

7. OpenHands(前身为 OpenDevin)

OpenHands(前身为 OpenDevin)是一个开源的自主 AI 代理,旨在帮助开发者应对软件工程的复杂性。它不是一个传统的 AI 代码审查工具,但可以帮助审查和调试代码。通过集成诸如 shell、代码编辑器和网页浏览器等工具,OpenHands 利用大型语言模型(LLMs)来增强软件开发实践。
OpenHands

特性

  • OpenHands 超越了静态代码分析,执行分析、负载测试和调试任务。
  • 它通过与 GitHub、GitLab、Bitbucket 和 CI/CD 管道等平台集成,适合现有的工作流,确保采用过程顺利。

优势

  • 它在识别复杂的如竞态条件和性能瓶颈等问题上表现出色。
  • 除了突出显示问题之外,这个工具还积极解决这些问题,提高开发效率。

不足

  • 该工具的高级功能可能需要大量的初始设置和理解,可能会给新用户带来挑战。
  • OpenHands 的全面功能对于小型代码库来说可能过于庞大,使其更适合大型项目。

价格

  • 免费计划:是的。
  • 付费计划:每位开发者每月 15 美元起。

如何开始

  1. 查看 OpenHands 文档和源代码。
  2. 遵循环境设置指南。
  3. 连接到 GitHub、GitLab 或 Bitbucket。
  4. 学习其 AI 工具和调试功能。
  5. 分析、检测问题并改进代码。

8. CodeRabbit

CodeRabbit 是一个 AI 驱动的平台,通过在 pull request 上提供即时的逐行反馈,改变了代码审查过程。它使用高级 AI 模型提供类似人类的审查评论,解决了传统 linting 和静态分析之外的问题。
CodeRabbit

特性

  • 提供智能、快速的见解,检测其他工具可能遗漏的问题。
  • 启用与 AI 机器人在代码中的对话,以澄清上下文、查询和生成代码。
  • 评估代码更改与相关问题,以预测潜在影响。
  • 确保数据保密性,符合 SOC2 Type II、GDPR 和 HIPAA 标准,并提供选择退出的选项。
  • 有效地管理大型 pull request,准确及时地审查多达 100 个文件。

优势

  • 识别其他工具可能遗漏的复杂问题。
  • 超越突出显示问题,积极参与问题的解决。
  • 与流行平台和 CI/CD 管道顺畅协作。

不足

  • 对于小型代码库来说,它可能过于强大。
  • 高级功能可能需要大量的初始设置和理解。

价格

  • 免费计划:是的。
  • 轻量计划:12 美元/月,按年计费或 15 美元/月按月计费。
  • 专业计划:24 美元/月,按年计费或 30 美元/月按月计费。
  • 企业计划:自定义定价。

如何开始

  1. 访问 CodeRabbit 网站。
  2. 选择计划。
  3. 安装应用程序。将 CodeRabbit 应用程序添加到首选的 Git 平台,如 GitHub、GitLab 或 Azure DevOps。
  4. 可选地,设置与 Jira 或 Linear 等工具的集成以增强功能。
  5. 开始创建 pull request;CodeRabbit 将自动提供 AI 驱动的审查和反馈。

9. Amazon CodeWhisperer

Amazon CodeWhisperer 是一个 AI 驱动的代码生成工具,通过提供实时的代码建议来提高开发者生产力。它无缝集成到各种集成开发环境(IDE)中,并支持多种编程语言,提供符合您编码风格的上下文建议。
Amazon CodeWhisperer

特性

  • 根据您当前的编码上下文生成代码片段和整个函数,帮助加速开发。
  • 与其他亚马逊网络服务(AWS)无缝协作,启用诸如从代码中创建亚马逊 S3 存储桶和 DynamoDB 表等任务。
  • 与 Visual Studio Code、JetBrains 等流行 IDE 兼容。
  • 协助创建自动化的代码审查评论和代码文档,促进更好的理解和可维护性。

优势

  • 提供符合您编码风格的精确代码建议,提高效率。
  • 通过与各种开发环境兼容,确保灵活性。

不足

  • 有时可能会建议较旧的库,需要手动验证。
  • 对于复杂的编码场景,它可能难以提供准确的建议。

价格

  • 免费计划:是的。
  • 专业计划:每位用户每月 19 美元。

如何开始

  1. 访问 Amazon CodeWhisperer 页面并使用 AWS 账户登录。
  2. 下载并安装 CodeWhisperer 扩展到首选的 IDE,如 Visual Studio Code 或 JetBrains。
  3. 配置设置。
  4. 开始编写代码;CodeWhisperer 将自动提供实时建议。

10. Bito AI

Bito 的 AI 代码审查代理是一个高级工具,通过提供自动化的深度代码审查,旨在提高代码质量和简化开发工作流。利用大型语言模型(LLMs),它分析代码以识别错误、代码异味和安全漏洞,并在开发环境中提供可操作的见解。
Bito AI

特性

  • 利用高级 AI 模型检测错误和安全漏洞等问题,提供详细的逐行反馈。
  • 与 Sonar、Snyk 等工具集成,执行全面的静态代码和安全分析,确保强大的代码质量和合规性。
  • 支持与 GitHub、GitLab 和 Bitbucket 平台以及 CI/CD 管道的集成,确保顺利融入现有工作流。
  • 在 Visual Studio Code 和 JetBrains 等流行 IDE 中提供实时代码审查反馈,使开发者能够在开发过程中及时解决问题。

优势

  • 提供精确的上下文感知反馈,提高代码质量,减少错误和漏洞的可能性。
  • 提供见解和最佳实践,有助于开发者的专业成长,特别是对于经验不足的开发者。
  • 确保代码保密性,不存储或使用代码进行 AI 模型训练,符合企业级安全标准。

不足

  • 实施和自定义工具以适应特定工作流可能需要初步的时间和精力投入。

价格

  • 免费计划:是的。
  • 10X 开发者计划:每位席位每月 15 美元。
  • 团队计划:自定义定价。

如何开始

  1. 前往 Bito AI 网站并创建账户。
  2. 下载并安装与首选 IDE(如 Visual Studio Code 或 JetBrains)兼容的 Bito 扩展。
  3. 设置与代码存储库平台(如 GitHub、GitLab 或 Bitbucket)的集成,并配置任何必要的 CI/CD 管道设置。
  4. 开始编写代码;AI 代码审查代理将自动分析代码并提供实时反馈。

选择合适的 AI 代码审查工具

如果您想要一个便宜的工具,我推荐每月 10 美元的 PullReview.ai 或者每月 4 美元的 GitHub Copilot 团队计划。PullRequest 和 CodeScene 为大型团队提供深入的审查,但这些工具价格更高。GitHub Copilot 和 Amazon CodeWhisperer 是 AI 驱动的代码建议的不错选择。

CodeRabbit 和 PullReview.ai 应该适用于自动化的 pull request 审查。如果您喜欢开源工具,OpenHands 是一个不错的选择。Replit 最适合基于云的协作,而 Cursor 与 CI/CD 管道集成良好,有助于工作流优化。

对于支持多种编程语言的工具,GitHub Copilot、Amazon CodeWhisperer 和 Bito AI 提供了多种语言的 AI 驱动代码协助。Replit 是一个支持多种编程语言的基于云的开发环境,适合协作。OpenDevin 提供不同语言的 AI 驱动编码支持,简化开发工作流。

不同的工具以不同的方式处理数据以确保安全性。如果您处理敏感数据,确保遵守 SOC2 Type II、GDPR 或 HIPAA 等法规至关重要,CodeRabbit 通过遵守这些标准来确保数据保密性。

PullRequest 和 CodeScene 提供有关安全风险的见解,同时保持数据隐私。Bito AI 和 OpenDevin 提供注重隐私的 AI 辅助,一些工具(如 Cursor)允许用户选择不参与基于云的 AI 训练,以增加安全性。

结论

AI 驱动的代码审查工具通过自动化审查过程、提高代码质量和减少开发者手动检查时间,显著改变了软件开发。这些工具提供高级错误检测、安全分析和性能优化,并无缝集成到现代开发环境中。

开发者应根据工作流需求评估工具,确保选择的解决方案在效率、可用性和成本效益之间取得平衡。

随着 AI 的发展,这些工具将变得更加智能,提供更好的建议、实时协作和自动化修复。

常见问题解答

什么是 AI 代码审查工具?

AI 代码审查工具是一种软件解决方案,它自动分析代码中的错误、安全漏洞、性能问题和最佳实践。它提供上下文感知反馈、自动化建议和重构推荐,以提高代码质量。

AI 代码审查工具如何工作?

这些工具使用机器学习模型、静态分析和自然语言处理来扫描代码、检测问题并建议修复。

代码审查工具适合小型团队和独立开发者吗?

是的。许多工具为个人开发者或小型团队提供免费或低成本计划。

这些工具支持所有编程语言吗?

并非所有工具都支持每种语言。有些专注于特定技术栈,而其他工具支持多种语言。

代码审查工具安全吗?

安全性因工具而异。有些工具在本地处理代码,而其他工具将数据发送到云端。为了确保代码隐私,选择符合 SOC2、GDPR 和 HIPAA 标准或提供本地部署选项的工具。

AI 代码审查工具对比

工具名称优点缺点专业特点
GitHub Copilot提供实时代码建议和补全,增强开发者生产力。支持多种编程语言,与 Visual Studio Code 和 GitHub 无缝集成。提供免费计划,团队计划价格合理。建议有时可能与复杂代码结构不一致。对于大型团队来说,价格可能会高。通过分析代码逻辑,提出覆盖典型场景的测试用例,减少手动创建测试的工作量。提供交互式聊天功能,便于澄清问题或建议替代代码解决方案。
CodeScene自动化代码审查,与 pull request 无缝集成。提供深入的代码健康状况、趋势、依赖关系、复杂性和技术债务分析。支持 25 种以上的编程语言。对于新用户来说,功能可能会让人感到不知所措。在小型项目中可能会被低估,限制其在小型团队中的感知价值。结合代码质量指标和行为分析,提供对代码和团队结构的深刻见解。提供可操作的建议,帮助团队优先处理技术债务缓解并提高代码可维护性。
PullReview.ai提供自动化的、基于上下文的代码改进建议。在部署前检测漏洞和安全缺陷。与 GitHub 无缝集成。仅限于 GitHub 集成,不支持 GitLab 或 Bitbucket。可能会误解上下文,导致误导性或不必要的警告。提供自动化审查摘要和 pull request 洞见,增强工作流。对于基本的静态分析和捕捉重复性错误非常有效。
CodeRabbit提供智能、快速的见解,检测其他工具可能遗漏的问题。支持与流行平台和 CI/CD 管道的顺畅协作。确保数据保密性,符合 SOC2 Type II、GDPR 和 HIPAA 标准。对于小型代码库来说,它可能过于强大。高级功能可能需要大量的初始设置和理解。提供详细的逐行反馈,超越传统的 linting 和静态分析。支持代码生成和上下文澄清的交互式对话。
Bito AI提供精确的上下文感知反馈,提高代码质量。提供见解和最佳实践,有助于开发者的专业成长。确保代码保密性,不存储或使用代码进行 AI 模型训练。实施和自定义工具以适应特定工作流可能需要初步的时间和精力投入。支持 50 多种编程语言和 25 种以上的口语语言。能够根据 pull request 的复杂性估计审查工作量,帮助团队优先处理高影响的更改。
Snyk提供实时的安全情报和修复建议,不会干扰开发过程。支持广泛的编程语言和工具。通过机器学习引擎不断优化安全工具。价格相对较高,起价为每月 25 美元 / 产品。专注于静态应用安全测试(SAST),确保实时代码安全。在软件开发生命周期(SDLC)的各个阶段集成安全测试。
OpenHands(前身为 OpenDevin)超越静态代码分析,执行分析、负载测试和调试任务。与 GitHub、GitLab、Bitbucket 和 CI/CD 管道等平台集成,确保采用过程顺利。高级功能可能需要大量的初始设置和理解,可能对新用户构成挑战。对于小型代码库来说,功能可能过于全面。在识别复杂的如竞态条件和性能瓶颈等问题上表现出色。积极解决突出显示的问题,提高开发效率。
Amazon CodeWhisperer提供符合您编码风格的精确代码建议,提高效率。与各种开发环境兼容,确保灵活性。有时可能会建议较旧的库,需要手动验证。对于复杂的编码场景,它可能难以提供准确的建议。与其他亚马逊网络服务(AWS)无缝协作,启用诸如从代码中创建亚马逊 S3 存储桶和 DynamoDB 表等任务。协助创建自动化的代码审查评论和代码文档,促进更好的理解和可维护性。
Cursor提供实时的 AI 驱动的错误检测和代码建议。支持多种编程语言和版本控制系统。可能会引入开销,影响 CI/CD 构建时间。详细的分析可能会让新接触性能优化的开发者感到不知所措。通过分析开发者与代码的交互来识别潜在问题。提供详细的执行指标以优化代码性能。
PullRequest结合 AI 技术和专家人工审查者,提供全面的代码分析。快速反馈审查,减少工程周期时间。对于小型团队或个人开发者来说,价格可能会很高。AI 驱动的建议仍需手动验证。提供年度安全报告和合规性评估。提供可操作的指标、仪表板和每周总结,帮助团队改进开发实践。

本文由AI生成,仅供参考。
参考来源:https://www.sitepoint.com/best-ai-code-review-tools-for-developers/?utm_source=rss

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值