​Soft NMS(非极大值抑制改进算法)详解

1. 核心思想与改进动机

传统NMS通过固定IoU阈值直接删除重叠框,导致密集目标检测中易误删正确框​(如人群、车辆等场景)。Soft NMS通过动态衰减重叠框的置信度而非直接删除,保留更多潜在的正确检测结果,提升检测精度。


2. 算法流程

Soft NMS在传统NMS基础上增加置信度调整步骤:

  1. 输入​:检测框集合 B,包含坐标和置信度 S,以及IoU阈值 Nt​、衰减参数 σ。
  2. 排序​:按置信度降序排列检测框。
  3. 迭代处理​:
    • 选择当前最高分框 M,加入保留列表。
    • 计算 M 与剩余框的IoU,根据重叠程度动态调整其置信度:
      • 线性衰减​: 
      • 高斯衰减​:
<think>好的,我现在需要处理用户关于YOLOv5中NMS非极大值抑制算法流程图的问题。首先,用户明确提到想要查找流程图,所以我需要先理解YOLOv5中NMS的具体实现步骤,并将其整理成流程形式。 根据之前的引用内容,特别是引用[3]和[4],YOLOv5的NMS处理步骤大致包括:按置信度排序、计算IoU、抑制冗余框等。但YOLOv5可能有一些优化,比如多类别处理或并行计算。我需要确认这些步骤的顺序以及可能的变体。 接下来,我需要确保流程图的描述准确且符合YOLOv5的实际代码结构。例如,YOLOv5是否对每个类别单独进行NMS,还是合并处理?引用[4]提到YOLOv1是按类别分别处理,但YOLOv5可能有所不同。查阅资料或代码片段会有帮助,但用户提供的引用中没有详细说明YOLv5的具体实现,可能需要依赖已有的知识。 然后,我需要将步骤分解为流程图的形式,通常包括开始、排序、选择最高置信框、计算IoU、抑制低于阈值的框、循环直到处理完所有框,最后输出结果。同时要注意YOLOv5可能的优化点,如使用矩阵运算加速处理,或者合并多个步骤以提高效率。 用户可能需要流程图中的每个步骤都有简要说明,例如如何计算IoU,如何判断是否抑制。此外,引用[2]提到NMS阈值的影响,这可能需要在流程图中标注阈值的作用位置,比如在比较IoU时使用该阈值决定是否抑制。 需要检查是否有遗漏的步骤,例如是否在NMS前进行置信度过滤,即先去掉低置信度的框,再执行NMS。这在目标检测中是常见的预处理步骤,但用户的问题可能专注于NMS本身,所以需要明确流程图的范围。 最后,生成相关问题时要围绕NMS在YOLOv5中的具体实现、参数影响、优化方法等,确保问题有助于用户深入理解。例如,询问多类别处理方式或与其他框架的NMS区别。</think>### YOLOv5 NMS非极大值抑制算法流程图解析 #### **算法流程概览** YOLOv5的NMS实现基于**多类别并行处理**和**矩阵运算加速**,核心流程如下: ```mermaid graph TD A[开始] --> B[输入预测框集合] B --> C[按置信度从高到低排序] C --> D{遍历所有类别} D --> E[提取当前类别的所有预测框] E --> F[选择最高置信度的候选框] F --> G[计算与剩余框的IoU] G --> H[删除IoU超过阈值的框] H --> I{是否遍历完所有框?} I -->|否| F I -->|是| J{是否处理完所有类别?} J -->|否| D J -->|是| K[输出保留的预测框] ``` #### **关键步骤说明** 1. **输入预处理** - 输入格式:$[x_1,y_1,x_2,y_2,score,class]$,其中$x_1,y_1$为左上角坐标,$x_2,y_2$为右下角坐标 - 先进行置信度过滤(例如阈值0.25),移除低置信度预测框[^3] 2. **多类别并行处理** - 对每个类别独立执行NMS,避免跨类别抑制[^4] - 使用矩阵运算加速多类别处理(基于PyTorch实现) 3. **IoU计算与抑制** - 使用改进的**GIoU**或**DIoU**计算重叠度(公式:$IoU = \frac{面积交集}{面积并集}$) - 抑制阈值$\theta$(默认0.45)控制冗余框过滤强度[^2] 4. **算法优化特点** - **Batch模式处理**:支持同时处理多张图像的预测结果 - **Torchvision集成**:调用`torchvision.ops.nms()`实现高效计算 - **可配置参数**:通过`conf_thres`、`iou_thres`控制过滤强度[^3] #### **代码实现片段** ```python # YOLOv5官方实现核心代码(简化版) def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45): # 1. 置信度过滤 xc = prediction[..., 4] > conf_thres prediction = prediction[xc] # 2. 按类别分组 class_offset = prediction[:, 5:6] * 4096 # 类别偏移量 boxes, scores = prediction[:, :4] + class_offset, prediction[:, 4] # 3. 调用Torchvision NMS keep = torchvision.ops.nms(boxes, scores, iou_thres) return prediction[keep] ``` #### **数学表达** 对于两个边界框$B_i,B_j$,IoU计算为: $$ IoU(B_i,B_j) = \frac{Area(B_i \cap B_j)}{Area(B_i \cup B_j)} $$ 当$IoU > \theta$时执行抑制操作[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值