1. 核心思想与改进动机
传统NMS通过固定IoU阈值直接删除重叠框,导致密集目标检测中易误删正确框(如人群、车辆等场景)。Soft NMS通过动态衰减重叠框的置信度而非直接删除,保留更多潜在的正确检测结果,提升检测精度。
2. 算法流程
Soft NMS在传统NMS基础上增加置信度调整步骤:
- 输入:检测框集合 B,包含坐标和置信度 S,以及IoU阈值 Nt、衰减参数 σ。
- 排序:按置信度降序排列检测框。
- 迭代处理:
- 选择当前最高分框 M,加入保留列表。
- 计算 M 与剩余框的IoU,根据重叠程度动态调整其置信度:
- 线性衰减:
- 高斯衰减:
- 线性衰减: