python提高pandas处理CSV效率的方法

在处理1600万行、1.6GB大小的CSV数据时,使用pandas DataFrame起初耗时5小时。通过分析,发现直接设置整列值而非逐行操作能显著提升效率。改用索引at方法后,处理时间降至1-2分钟。

项目场景:

对从数据库导出的原始CSV数据进行更新,使用Python完成


问题描述:

网上建议使用pandas包的DataFrame处理方便高效,比csv包好。但执行时非常慢,1600万行记录(1.6GB),跑了5小时都没结束(4列置空,1列Hash)

# 需要hash的示例代码
for field in field_list:
    for i in range(0, len(csv_df.index)):
        if not pd.isnull(csv_df[field][i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值