class graph:
def __init__(self,value):
self.value=value
self.neighbors=None
# 图的广度优先遍历
# 1.利用队列实现
# 2.从源节点开始依次按照宽度进队列,然后弹出
# 3.每弹出一个节点,就把该节点所有没有进过队列的邻接点放入队列
# 4.直到队列变空
from queue import Queue
def bfs(node):
if node is None:
return
queue = Queue()
nodeSet = set()
queue.put(node)
nodeSet.add(node)
while not queue.empty():
cur = queue.get() # 弹出元素
print(cur.value) # 打印元素值
for next in cur.neighbors: # 遍历元素的邻接节点
if next not in nodeSet: # 若邻接节点没有入过队,加入队列并登记
nodeSet.add(next)
queue.put(next)
# 图的深度优先遍历(非递归)
# 1.利用栈实现
# 2.从源节点开始把节点按照深度放入栈,然后弹出
# 3.每弹出一个点,把该节点下一个没有进过栈的邻接点放入栈
# 4.直到栈变空
def dfs(node):
if node is None:
return
nodeSet = set()
stack = []
print(node.value)
nodeSet.add(node)
stack.append(node)
python广度、深度(递归 非递归)优先遍历
最新推荐文章于 2023-09-23 16:51:51 发布