数据统计分析方法:
描述统计、假设检验、相关分析、方差分析、回归分析、聚类分析、主成分与因子分析、时间序列分析、决策树。
回归分析
研究自变量与因变量之间的关系、可以用来预测因变量的值、
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
多元线性回归可表示为Y=a+b1X +b2X2+ e,其中a表示截距,b表示直线的斜率,e是误差项。
简单线性回归,
如果自变量X与因变量Y是直线型关系,则可以通过建立一元线性模型来描述它们之间的关系。而将所建立的一元线性模型称为一元回归模型或简单线性回归模型,
Y=β0+β1Xi+εi
回归模型分成两部分:一部分是由线性函数β0+β1Xi构成的确定性数值;另一部分就是随机误差εi。E(Yi)=β0+β1Xi称为回归函数。
回归系数的估计
回归分析的任务就是用恰当的方法估计出参数β0和β1。通过n对样本数据(Xi,Yi)可以得到回归函数E(Yi)=β0+β1Xi的估计,即:
上式称为Y关于X的一元线性回归方程。
β0和β1的估计值b0,b1可以通过最小二乘法计算得到。用Excel,SPSS进行一元线性拟合就是通过最小二乘法计算出b0和b1数值的。
数据统计分析方法
最新推荐文章于 2024-09-07 19:53:07 发布