JavaEE 企业级分布式高级架构师(六)MySQL学习笔记(5)

锁机制篇

一条update语句

准备工作

  • 故事继续发展,我们还是使用t这个表:
CREATE TABLE t (
    id INT PRIMARY KEY,
    c VARCHAR(100)
) Engine=InnoDB CHARSET=utf8;
  • 现在表里的数据就是这样的:
mysql> SELECT * FROM t;
+----+--------+
| id | c      |
+----+--------+
|  1 | 刘备   |
+----+--------+
1 row in set (0.00 sec)
  • 然后更新表里的一条记录:
update t set c='曹操' where id = 1;

执行流程

在这里插入图片描述

MySQL锁介绍

  • 按照锁的粒度来说,MySQL主要包含三种类型(级别)的锁定机制:

    • 全局锁:锁的是整个database,由MySQL的SQL layer层实现。
    • 表级锁:锁的是某个table,由MySQL的SQL layer层实现。
    • 行级锁:锁的是某行数据,也可能锁定行之间的间隙,由某些存储引擎实现,比如InnoDB。
  • 按照锁的功能来说分为:

    • 共享(读)锁【S锁】:加了S锁的记录,允许其他事务再加S锁,不允许其他事务再加X锁。
      • 加锁方式:select…lock in share mode
    • 排他(写)锁【X锁】:加了X锁的记录,不允许其他事务再加S锁或者X锁。
      • 加锁方式:select…for update
  • 按照锁的实现方式来说:悲观锁乐观锁(使用某一版本列或者唯一列进行逻辑控制)

  • 表级锁和行级锁的区别:

    • 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率高,并发度最低。
    • 行级锁:开销大,加锁慢;会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度也最高。

MySQL全局锁

  • 全局锁就对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的MDL的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。
  • 加全局锁的命令为:
mysql> flush tables with read lock;
  • 释放全局锁的命令为:
mysql> unlock tables;
  • 或者断开加锁session的连接,自动释放全局锁。
  • 说到全局锁用于备份这个事情,还是很危险的。因为如果在主库上加全局锁,则整个数据库将不能写入,备份期间影响业务运行,如果在从库上加全局锁,则会导致不能执行主库同步过来的操作,造成主从延迟。
  • 对于innodb这种支持事务的引擎,使用mysqldump备份时可以使用–single-transaction参数,利用 mvcc 提供一致性视图,而不使用全局锁,不会影响业务的正常运行。而对于有MyISAM这种不支持事务的表,就只能通过全局锁获得一致性视图,对应的mysqldump参数为–lock-all-tables。

MySQL表级锁

表级锁介绍

  • 由MySQL的SQL layer层实现
  • MySQL的表级锁有下面几种:
    • 表读、写锁
    • 元数据锁(meta data lock,MDL)
    • 意向锁(Intention Locks(InnoDB))
    • 自增锁(Auto-INC Locks)
  • MySQL实现的表级锁定的争用状态变量:show status like ‘table%’;
    在这里插入图片描述
- table_locks_immediate:产生表级锁定的次数
- table_locks_waited:出现表级锁定争用而发生等待的次数

表锁

介绍
  • 表锁有两种表现形式:
    • 表共享读锁(Table Read Lock):S锁
    • 表独占写锁(Table Write Lock):X锁
  • 手动增加表锁:
lock table 表名1 read(write), 表名2 read(write), 其他;
  • 查看表锁情况:
show open tables;
  • 删除表锁:
unlock tables;
  • S锁的作用:在读取过程中防止其他会话对表进行修改操作,如果一个表上有任何锁,包括S、X锁,都无法再加X锁。一个表上可以加多个S锁,数据可以共享读。
  • X锁是排它锁,在修改过程中,对表处于一个独享状态。如果一个表上有X锁,那么此时表上不允许加任何锁。
  • 表锁的兼容性:
    • S、S:兼容
    • S、X:不兼容
    • X、X:不兼容
演示
  • 环境准备:
create table mylock(
	id int(11) not null auto_increment,
	name varchar(20) default null,
	primary key (id)
);
insert into mylock(id, name) values(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd');
  • 读锁演示:

在这里插入图片描述

  • 写锁演示

在这里插入图片描述

元数据锁

介绍
  • MDL不需要显式使用,在访问一个表的时候会自动加上。MDL的作用是:保证读写的正确性。可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删除了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。
  • 因此,在MySQL 5.5版本中引入了MDL,在开启一个事务后,当对一个表做增删改查操作的时候,加MDL读锁;当要对表结构变更操作的时候,加 MDL 写锁
    • 执行 DML、DQL 语句时,会加元数据读锁。
    • 执行 DDL 语句时,会加元数据写锁。
  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程同时给一个表加字段,其中一个要等另一个执行完才能开始执行。
演示

在这里插入图片描述

  • 我们可以看到 session A 先启动,这时候会对表 mylock 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。
  • 之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。
  • 如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 mylock 上新申请 MDL 读锁的请求也会被 session C 阻塞。前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。
  • 你现在应该知道了,事务中的MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

意向锁

介绍
  • InnoDB也实现了表级锁,也就是意向锁,意向锁是mysql内部使用的,不需要用户干预意向锁和行锁可以共存,意向锁的主要作用是为了【全表更新数据】时的性能提升。否则在全表更新数据时,需要先检索该表是否某些记录上面有行锁。
  • 表明“某个事务正在某些行持有了锁、或该事务准备去持有锁”。
  • 意向锁的存在是为了协调行锁和表锁的关系,支持多粒度(表锁与行锁)的锁并存。
  • 例子:事务A修改user表的记录r,会给记录r上一把行级的排他锁(X),同时会给user表上一把意向排他锁(IX),这时事务B要给user表上一个表级的排他锁就会被阻塞。意向锁通过这种方式实现了行锁和表锁共存且满足事务隔离性的要求。
  • 意向共享锁(IS锁):事务在请求S锁前,要先获得IS锁。
  • 意向排他锁(IX锁):事务在请求X锁前,要先获得IX锁
作用
  • 当我们需要加一个排他锁时,需要根据意向锁去判断表中有没有数据行被锁定(行锁)。
  • 如果意向锁是行锁,则需要遍历每一行数据去确认。
  • 如果意向锁是表锁,则只需要判断一次即可知道有没数据行被锁定,提升性能。
兼容性
意向共享锁(IS)意向排他锁(IX)共享锁(S)排他锁(X)
意向共享锁(IS)兼容兼容兼容冲突
意向排他锁(IX)兼容兼容冲突冲突
共享锁(S)兼容冲突兼容冲突
排他锁(X)冲突冲突冲突冲突
  • 意向锁相互兼容,因为IX、IS只是表明申请更低层次级别元素(比如 page、记录)的X、S操作。
  • 因为上了表级S锁后,不允许其他事务再加X锁,所以表级S锁和X、IX锁不兼容。
  • 上了表级X锁后,会修改数据,所以表级X锁和 IS、IX、S、X(即使是行排他锁,因为表级锁定的行肯定包括行级速订的行,所以表级X和IX、行级X)不兼容。
  • 注意:上了行级X锁后,行级X锁不会因为有别的事务上了IX而堵塞,一个mysql是允许多个行级X锁同时存在的,只要他们不是针对相同的数据行。

自增锁

  • AUTO-INC锁是一种特殊的表级锁,发生涉及AUTO_INCREMENT列的事务性插入操作时产生。

MySQL行级锁

行级锁介绍

  • MySQL的行级锁,是由存储引擎实现的,这里我们主要讲解 InnoDB 的行级锁。
  • InnoDB行锁是通过给索引上的索引项加锁来实现的,因此InnoDB这种行锁实现特点意味着:只有通过索引条件检索的数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!
  • InnoDB的行级锁,按照锁定范围来说,分为三种:
    • 记录锁(Record locks):锁定索引中一条记录。
    • 间隙锁(Gap locks):要么锁住索引记录中间的值,要么锁住第一个索引记录前面的值或者最后一个索引记录后面的值。
    • 临键锁(Next-Key locks):是索引记录上的记录锁和在索引记录之前的间隙锁的组合。
    • 插入意向锁(Insert Intention Locks):做insert操作时添加的对记录id的锁。
  • InnoDB的行级锁,按照功能来说,分为两种:
    • 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
    • 排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。
  • 对于 UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X)
  • 对于普通 SELECT 语句,InnoDB不会加任何锁,事务可以通过以下语句显式给记录集加共享锁和排他锁。
  • 手动添加共享锁(S)
select * from table_name where ... lock in share mode;
  • 手动添加排他锁(X)
select * from table_name where ... for update;
  • 案例
CREATE TABLE `t1_simple`  (
  `id` int(11) NOT NULL,
  `pubtime` int(11) NULL DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `idx_pu`(`pubtime`) USING BTREE
) ENGINE = InnoDB;
INSERT INTO `t1_simple` VALUES (1, 10);
INSERT INTO `t1_simple` VALUES (4, 3);
INSERT INTO `t1_simple` VALUES (6, 100);
INSERT INTO `t1_simple` VALUES (8, 5);
INSERT INTO `t1_simple` VALUES (10, 1);
INSERT INTO `t1_simple` VALUES (100, 20);

记录锁(Record Locks)

  • 记录锁,仅仅锁住索引记录的一行,在单条索引记录上加锁。
  • record lock锁住的永远是索引,而非记录本身,即使该表上没有任何索引,那么innodb会在后台创建一个隐藏的聚集主键索引,那么锁住的就是这个隐藏的聚集主键索引。
  • 所以说当一条sql没有走任何索引时,那么将会在每一条聚合索引后面加X锁,这个类似于表锁,但原理上和表锁应该是完全不同的。
-- 加记录共享锁
select * from t1_simple where id = 1 lock in share mode;
-- 加记录排它锁
select * from t1_simple where id = 1 for update;

间隙锁(Gap Locks)

  • 区间锁,仅仅锁住一个索引区间(开区间,不包括双端端点)。
  • 在索引记录之间的间隙中加锁,或者是在某一条索引记录之前或者之后加锁,并不包括该索引记录本身。
  • 间隙锁可用于防止幻读,保证索引间的不会被插入数据。

在这里插入图片描述

-- session1:
begin;
select * from t1_simple where id > 4 for update;
---------------------------------------------------------
-- session2:
insert into t1_simple values (7,100); --阻塞
insert into t1_simple values (3,100); --成功
  • 间隙锁就是MVCC防止幻读的解决方案。MVCC实现的是快照读,加锁不影响读操作。
  • 只有RR事务隔离级别才用到间隙锁,RC是不需要的。

临键锁(Next-Key Locks)

  • record lock + gap lock,左开右闭区间,例如(5, 8]。
  • 默认情况下,innodb使用next-key locks来锁定记录。select … for update
  • 但当查询的索引含有唯一属性的时候,Next-Key Lock 会进行优化,将其降级为Record Lock,即仅锁住索引本身,不是范围。
  • Next-Key Lock在不同的场景中会退化:
场景退化成的锁类型
使用 unique index 精确匹配(=),且记录存在Record Lock
使用 unique index 精确匹配(=),且记录不存在Gap Lock
使用 unique index 精确匹配(<或>)Record Lock + Gap Lock
  • 当前数据库中的记录信息:
mysql> select * from t1_simple;
+-----+---------+
| id  | pubtime |
+-----+---------+
|  10 |       1 |
|  13 |       1 |
|   4 |       3 |
|  11 |       4 |
|   8 |       5 |
|  12 |       9 |
|   1 |      10 |
| 100 |      20 |
|   6 |     100 |
+-----+---------+
-- session1执行:
begin;
select * from t1_simple where pubtime = 20 for update;
-- 临键锁区间(10,20],(20,100]
--- session2执行:
insert into t1_simple values (16, 19); --阻塞
select * from t1_simple where pubtime = 20 for update; --阻塞
insert into t1_simple values (16, 50); --阻塞
insert into t1_simple values (16, 101); --成功

行锁加锁规则

主键索引
  • 等值查询
    • 命中记录,加记录锁。
    • 未命中记录,加间隙锁。
  • 范围查询
    • 没有命中任何一条记录时,加间隙锁。
    • 命中一条或者多条,包含 where 条件的临键区间,加临键锁。
辅助索引
  • 等值查询
    • 命中记录,命中记录的辅助索引项+主键索引项加记录锁,辅助索引项两侧加间隙锁。
    • 未命中记录,加间隙锁。
  • 范围查询
    • 没有命中任何一条记录时,加间隙锁。
    • 命中一条或者多条,包含 where 条件的临键区间加临键锁。命中记录的 id 索引项加记录锁。

插入意向锁(Insert Intention Locks)

  • 做insert操作时,会锁定未提交记录的id的值。

  • 案例:
    在这里插入图片描述

  • 插入意向锁是一种Gap锁,不是意向锁,在insert操作时产生。

  • 在多事务同时写入不同数据至同一索引间隙的时候,并不需要等待其他事务完成,不会发生锁等待。

  • 假设有一个记录索引包含键值4和7,不同的事务分别插入5和6,每个事务都会产生一个加在4~7之间的插入意向锁,获取在插入行上的排它锁,但是不会被互相锁住,因为数据行并不冲突。

  • 插入意向锁不会阻止任何锁,对于插入的记录会持有一个记录锁。

行锁相关参数

  • InnoDB所使用的行级锁定争用状态查看:show status like ‘innodb_row_lock%’;
    在这里插入图片描述
- Innodb_row_lock_current_waits:当前正在等待锁定的数量;
- Innodb_row_lock_time:从系统启动到现在锁定总时间长度;
- Innodb_row_lock_time_avg:每次等待所花平均时间;
- Innodb_row_lock_time_max:从系统启动到现在等待最长的一次所花的时间;
- Innodb_row_lock_waits:系统启动后到现在总共等待的次数;
  • 对于这5个状态变量,比较重要的是:Innodb_row_lock_time_avg、Innodb_row_lock_waits、Innodb_row_lock_time,尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析系统中为什么有有如此多的等待,然后根据分析结果着手制定优化计划。

两阶段锁

  • 传统的 RDBMS 加锁的一个原则,就是 2PL(Two-Phase Locking,二阶段锁)。相对而言,2PL比较容易理解,说的是锁操作分为两个阶段:加锁阶段解锁阶段,并且保证加锁阶段与解锁阶段不相交。如下图:

在这里插入图片描述

  • 从上图可以看出,2PL就是将加锁、解锁分为两个完全不相交的阶段
    • 加锁阶段:只加锁,不解锁
    • 解锁阶段:只解锁,不加锁

InnoDB行锁演示

创建表和索引
-- 创建表
create table test_innodb_lock(a int(11), b varchar(16)) engine=innodb;
-- 初始化表数据
insert into test_innodb_lock(a, b) values(1, '1000'),(2, '2000'),(3, '3000'),(4, '4000'),(5, '5000'),(6, '6000'),(7, '7000'),(8, '8000'),(9, '9000');
-- 创建索引
create index test_innodb_lock_a_idx on test_innodb_lock(a);
create index test_innodb_lock_b_idx on test_innodb_lock(b);

在这里插入图片描述

行锁定基本演示
Session ASession B
1mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
2mysql> update test_innodb_lock set b = ‘a1’ where a = 1;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0
更新,但是还没有提交
3mysql> update test_innodb_lock set b = ‘a2’ where a = 1;
对同一条【同一行】数据进行更新,被阻塞,等待
4mysql> commit;
Query OK, 0 rows affected (0.00 sec)
提交啦
5mysql> update test_innodb_lock set b = ‘a2’ where a = 1;
Query OK, 1 row affected (9.08 sec)
Rows matched: 1 Changed: 1 Warnings: 0
解除阻塞,更新正常进行,commit后提交。
无索引行锁升级为表锁演示
Session ASession B
1mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
2mysql> update test_innodb_lock set b = ‘2’ where b = 2000;
Query OK, 1 row affected (0.02 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> update test_innodb_lock set b = ‘3’ where b = 3000;
被阻塞,等待。注意:此时不是同一行记录
3mysql> commit;
Query OK, 0 rows affected (0.10 sec)
提交啦
4mysql> update test_innodb_lock set b = ‘3’ where b = 3000;
Query OK, 1 row affected (3.41 sec)
Rows matched: 1 Changed: 1 Warnings: 0
解除阻塞,更新正常进行,commit后提交。
间隙锁带来的插入问题演示
Session ASession B
1mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
2mysql> select * from test_innodb_lock;
| a | b |
| 1 | a2 |
| 2 | 2 |
| 3 | 3 |
| 4 | 4000 |
| 5 | 5000 |
| 6 | 6000 |
| 7 | 7000 |
| 8 | 8000 |
| 9 | 9000 |
3mysql> update test_innodb_lock set b = a * 100 where a < 4 and a > 1;
Query OK, 2 rows affected (0.03 sec)
Rows matched: 2 Changed: 2 Warnings: 0
4mysql> insert into test_innodb_lock values(2, ‘200’);
被阻塞,等待。
5mysql> commit;
Query OK, 0 rows affected (0.02 sec)
提交啦
6mysql> insert into test_innodb_lock values(2, ‘200’);
Query OK, 1 row affected (4.27 sec)
解除阻塞,完成插入。
使用共同索引不同数据的阻塞示例
Session ASession B
1mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
2mysql> update test_innodb_lock set b = ‘bbbb’ where a = 1 and b = ‘b2’;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0
3mysql> update test_innodb_lock set b = ‘bbbb’ where a = 1 and b = ‘b1’;
被阻塞
4mysql> commit;
Query OK, 0 rows affected (0.02 sec)
提交啦
5mysql> update test_innodb_lock set b = ‘bbbb’ where a = 1 and b = ‘b1’;
Query OK, 0 rows affected (5.27 sec)
Rows matched: 0 Changed: 0 Warnings: 0
阻塞去除,提交事务,更新完成。
死锁演示
Session ASession B
1mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
2mysql> update t1 set id = 110 where id = 11;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0
3mysql> update t2 set id = 210 where id = 21;
Query OK, 1 rows affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
4mysql> update t2 set id = 2100 where id = 21;
等待Session B释放资源,被阻塞。
5mysql> update t1 set id = 1100 where id = 11;
Query OK, 0 rows affected (0.39 sec)
Rows matched: 0 Changed: 0 Warnings: 0
等待Session A释放资源,被阻塞。
6两个 Session 互相等待对方的资源释放之后才能释放自己的资源,造成了死锁。

行锁原理分析

一条简单SQL的加锁分析

  • 在介绍完一些背景知识之后,本文接下来将选择几个有代表性的例子,来详细分析MySQL的加锁处理。当然,还是从最简单的例子说起。经常有朋友发给我一个SQL,然后问我,这个SQL加什么锁?就如同下面两条简单的SQL,他们加什么锁?
SQL1:select * from t1 where id = 10;
SQL2:delete from t1 where id = 10;

针对这个问题,该怎么回答?我能想象到的一个答案是:

SQL1:不加锁。因为MySQL是使用多版本并发控制的,读不加锁。
SQL2:对id = 10的记录加写锁 (走主键索引)
  • 这个答案对吗?说不上来。即可能是正确的,也有可能是错误的,已知条件不足,这个问题没有答案。如果让我来回答这个问题,我必须还要知道以下的一些前提,前提不同,我能给出的答案也就不同。要回答这个问题,还缺少哪些前提条件?
* 前提一:id列是不是主键?
* 前提二:当前系统的隔离级别是什么?
* 前提三:id列如果不是主键,那么id列上有索引吗?
* 前提四:id列上如果有二级索引,那么这个索引是唯一索引吗?
* 前提五:两个SQL的执行计划是什么?索引扫描?全表扫描?
  • 没有这些前提,直接就给定一条SQL,然后问这个SQL会加什么锁,都是很业余的表现。而当这些问题有了明确的答案之后,给定的SQL会加什么锁,也就一目了然。下面,我将这些问题的答案进行组合,然后按照从易到难的顺序,逐个分析每种组合下,对应的SQL会加哪些锁?
  • 下面的这些组合,我做了一个前提假设,也就是有索引时,执行计划一定会选择使用索引进行过滤 (索引扫描)。但实际情况会复杂很多,真正的执行计划,还是需要根据MySQL输出的为准。
* 组合一:id列是主键,RC隔离级别
* 组合二:id列是二级唯一索引,RC隔离级别
* 组合三:id列是二级非唯一索引,RC隔离级别
* 组合四:id列上没有索引,RC隔离级别
* 组合五:id列是主键,RR隔离级别
* 组合六:id列是二级唯一索引,RR隔离级别
* 组合七:id列是二级非唯一索引,RR隔离级别
* 组合八:id列上没有索引,RR隔离级别
* 组合九:Serializable隔离级别
  • 排序组合还没有列举完全,但是看起来,已经很多了。真的有必要这么复杂吗?事实上,要分析加锁,就是需要这么复杂。但是从另一个角度来说,只要你选定了一种组合,SQL需要加哪些锁,其实也就确定了。接下来,就让我妈来逐个分析这 9 种组合下的 SQL 加锁策略。
  • 注意:在前八种组合下,也就是RC、RR隔离级别下SQL1:select操作均不加锁,采用的是快照读,因此下面的讨论中就忽略了,主要讨论SQL2:delete操作的加锁
组合一:id主键+RC
  • 这个组合,是最简单,最容易分析的组合。id是主键,Read Committed隔离级别,给定SQL:delete from t1 where id = 10;只需要将主键上 id = 10 的记录加上X锁即可。如下图所示:
    在这里插入图片描述
  • 结论:id是主键时,此SQL只需要在 id=10 这条记录上加X锁即可。
组合二:id唯一索引+RC
  • 这个组合,id不是主键,而是一个Unique的二级索引键值。那么在RC隔离级别下,delete from t1 where id = 10; 需要加什么锁呢?见下图:
    在这里插入图片描述
  • 此组合中,id是unique索引,而主键是name列。此时,加锁的情况由于组合一有所不同。由于id是unique索引,因此delete语句会选择走id列的索引进行where条件的过滤,在找到id=10的记录后,首先会将unique索引上的id=10索引记录加上X锁,同时,会根据读取到的name列,回主键索引(聚簇索引),然后将聚簇索引上的name = ‘d’ 对应的主键索引项加X锁。为什么聚簇索引上的记录也要加锁?试想一下,如果并发的一个SQL,是通过主键索引来更新:update t1 set id = 100 where name = ‘d’; 此时,如果delete语句没有将主键索引上的记录加锁,那么并发的update就会感知不到delete语句的存在,违背了同一记录上的更新/删除需要串行执行的约束。
  • 结论:若id列是unique列,其上有unique索引。那么SQL需要加两个X锁,一个对应于id unique索引上的id = 10的记录,另一把锁对应于聚簇索引上的[name=’d’,id=10]的记录。
组合三:id非唯一索引+RC
  • 相对于组合一、二,组合三又发生了变化,隔离级别仍旧是RC不变,但是id列上的约束又降低了,id列不再唯一,只有一个普通的索引。假设delete from t1 where id = 10; 语句,仍旧选择id列上的索引进行过滤where条件,那么此时会持有哪些锁?同样见下图:
    在这里插入图片描述
  • 根据此图,可以看到,首先,id列索引上,满足id = 10查询条件的记录,均已加锁。同时,这些记录对应的主键索引上的记录也都加上了锁。与组合二唯一的区别在于,组合二最多只有一个满足等值查询的记录,而组合三会将所有满足查询条件的记录都加锁。
  • 结论:若id列上有非唯一索引,那么对应的所有满足SQL查询条件的记录,都会被加锁。同时,这些记录在主键索引上的记录,也会被加锁。
组合四:id无索引+RC
  • 相对于前面三个组合,这是一个比较特殊的情况。id列上没有索引,where id = 10;这个过滤条件,没法通过索引进行过滤,那么只能走全表扫描做过滤。对应于这个组合,SQL会加什么锁?或者是换句话说,全表扫描时,会加什么锁?这个答案也有很多:有人说会在表上加X锁;有人说会将聚簇索引上,选择出来的id = 10;的记录加上X锁。那么实际情况呢?请看下图:
    在这里插入图片描述
  • 由于id列上没有索引,因此只能走聚簇索引,进行全部扫描。从图中可以看到,满足删除条件的记录有两条,但是,聚簇索引上所有的记录,都被加上了X锁。无论记录是否满足条件,全部被加上X锁。既不是加表锁,也不是在满足条件的记录上加行锁。
  • 有人可能会问?为什么不是只在满足条件的记录上加锁呢?这是由于MySQL的实现决定的。如果一个条件无法通过索引快速过滤,那么存储引擎层面就会将所有记录加锁后返回,然后由MySQL Server层进行过滤。因此也就把所有的记录,都锁上了。
  • 注:在实际的实现中,MySQL有一些改进,在MySQL Server过滤条件,发现不满足后,会调用unlock_row方法,把不满足条件的记录放锁 (违背了2PL的约束)。这样做,保证了最后只会持有满足条件记录上的锁,但是每条记录的加锁操作还是不能省略的。
  • 结论:若id列上没有索引,SQL会走聚簇索引的全扫描进行过滤,由于过滤是由MySQL Server层面进行的。因此每条记录,无论是否满足条件,都会被加上X锁。但是,为了效率考量,MySQL做了优化,对于不满足条件的记录,会在判断后放锁,最终持有的,是满足条件的记录上的锁,但是不满足条件的记录上的加锁/放锁动作不会省略。同时,优化也违背了2PL的约束。
组合五:id主键+RR
  • 上面的四个组合,都是在Read Committed隔离级别下的加锁行为,接下来的四个组合,是在Repeatable Read隔离级别下的加锁行为。
  • 组合五,id列是主键列,Repeatable Read隔离级别,针对delete from t1 where id = 10; 这条SQL,加锁与【组合一】一致。
组合六:id唯一索引+RR
  • 与组合五类似,组合六的加锁,与【组合二】一致。两个X锁,id唯一索引满足条件的记录上一个,对应的聚簇索引上的记录一个。
组合七:id非唯一索引+RR
  • 还记得前面提到的MySQL的四种隔离级别的区别吗?RC隔离级别允许幻读,而RR隔离级别,不允许存在幻读。但是在组合五、组合六中,加锁行为又是与RC下的加锁行为完全一致。那么RR隔离级别下,如何防止幻读呢?问题的答案,就在组合七中揭晓。
  • 组合七,Repeatable Read隔离级别,id上有一个非唯一索引,执行delete from t1 where id = 10; 假设选择id列上的索引进行条件过滤,最后的加锁行为,是怎么样的呢?同样看下面这幅图:
    在这里插入图片描述
  • 此图,相对于【组合三:id非唯一索引+RC】看似相同,其实却有很大的区别。最大的区别在于,这幅图中多了一个GAP锁,而且GAP锁看起来也不是加在记录上的,倒像是加载两条记录之间的位置,GAP锁有何用?
  • 其实这个多出来的GAP锁,就是RR隔离级别,相对于RC隔离级别,不会出现幻读的关键。确实,GAP锁锁住的位置,也不是记录本身,而是两条记录之间的GAP。所谓幻读,就是同一个事务,连续做两次当前读 (例如:select * from t1 where id = 10 for update;),那么这两次当前读返回的是完全相同的记录 (记录数量一致,记录本身也一致),第二次的当前读,不会比第一次返回更多的记录 (幻象)。
  • 如何保证两次当前读返回一致的记录,那就需要在第一次当前读与第二次当前读之间,其他的事务不会插入新的满足条件的记录并提交。为了实现这个功能,GAP锁应运而生。
  • 如图中所示,有哪些位置可以插入新的满足条件的项 (id = 10),考虑到B+树索引的有序性,满足条件的项一定是连续存放的。记录[6,c]之前,不会插入id=10的记录;[6,c]与[10,b]间可以插入[10, aa];[10,b]与[10,d]间,可以插入新的[10,bb],[10,c]等;[10,d]与[11,f]间可以插入满足条件的[10,e],[10,z]等;而[11,f]之后也不会插入满足条件的记录。因此,为了保证[6,c]与[10,b]间,[10,b]与[10,d]间,[10,d]与[11,f]不会插入新的满足条件的记录,MySQL选择了用GAP锁,将这三个GAP给锁起来。
  • Insert操作,如insert [10,aa],首先会定位到[6,c]与[10,b]间,然后在插入前,会检查这个GAP是否已经被锁上,如果被锁上,则Insert不能插入记录。因此,通过第一遍的当前读,不仅将满足条件的记录锁上 (X锁),与组合三类似。同时还是增加3把GAP锁,将可能插入满足条件记录的3个GAP给锁上,保证后续的Insert不能插入新的id=10的记录,也就杜绝了同一事务的第二次当前读,出现幻象的情况。
  • 有心的朋友看到这儿,可以会问:既然防止幻读,需要靠GAP锁的保护,为什么组合五、组合六,也是RR隔离级别,却不需要加GAP锁呢?
  • 首先,这是一个好问题。其次,回答这个问题,也很简单。GAP锁的目的,是为了防止同一事务的两次当前读,出现幻读的情况。而组合五,id是主键;组合六,id是unique键,都能够保证唯一性。一个等值查询,最多只能返回一条记录,而且新的相同取值的记录,一定不会在新插入进来,因此也就避免了GAP锁的使用。其实,针对此问题,还有一个更深入的问题:如果组合五、组合六下,针对SQL:select * from t1 where id = 10 for update; 第一次查询,没有找到满足查询条件的记录,那么GAP锁是否还能够省略?此问题留给大家思考。
  • 结论:Repeatable Read隔离级别下,id列上有一个非唯一索引,对应SQL:delete from t1 where id = 10; 首先,通过id索引定位到第一条满足查询条件的记录,加记录上的X锁,加GAP上的GAP锁,然后加主键聚簇索引上的记录X锁,然后返回;然后读取下一条,重复进行。直至进行到第一条不满足条件的记录[11,f],此时,不需要加记录X锁,但是仍旧需要加GAP锁,最后返回结束。
组合八:id无索引+RR
  • 组合八,Repeatable Read隔离级别下的最后一种情况,id列上没有索引。此时SQL:delete from t1 where id = 10; 没有其他的路径可以选择,只能进行全表扫描。最终的加锁情况,如下图所示:
    在这里插入图片描述
  • 如图,这是一个很恐怖的现象。首先,聚簇索引上的所有记录,都被加上了X锁。其次,聚簇索引每条记录间的间隙(GAP),也同时被加上了GAP锁。这个示例表,只有6条记录,一共需要6个记录锁,7个GAP锁。试想,如果表上有1000万条记录呢?
  • 结论:在这种情况下,这个表上,除了不加锁的快照度,其他任何加锁的并发SQL,均不能执行,不能更新,不能删除,不能插入,全表被锁死。
组合九:Serializable
  • 针对前面提到的简单的SQL,最后一个情况:Serializable隔离级别。对于SQL2:delete from t1 where id = 10; 来说,Serializable隔离级别与Repeatable Read隔离级别完全一致,因此不做介绍
  • Serializable隔离级别,影响的是SQL1:select * from t1 where id = 10; 这条SQL,在RC,RR隔离级别下,都是快照读,不加锁。但是在Serializable隔离级别,SQL1会加读锁,也就是说快照读不复存在,MVCC并发控制降级为Lock-Based CC。
  • 结论:在MySQL/InnoDB中,所谓的读不加锁,并不适用于所有的情况,而是隔离级别相关的。Serializable隔离级别,读不加锁就不再成立,所有的读操作,都是当前读。

一条复杂SQL的加锁分析

写到这里,其实MySQL的加锁实现也已经介绍的八八九九。只要将本文上面的分析思路,大部分的SQL,都能分析出其会加哪些锁。而这里,再来看一个稍微复杂点的SQL,用于说明MySQL加锁的另外一个逻辑。SQL用例如下:
在这里插入图片描述
如图中的SQL,会加什么锁?假定在Repeatable Read隔离级别下 (Read Committed隔离级别下的加锁情况,留给读者分析。),同时,假设SQL走的是idx_t1_pu索引。
在详细分析这条SQL的加锁情况前,还需要有一个知识储备,那就是一个SQL中的where条件如何拆分?具体的介绍,建议阅读我之前的一篇文章:SQL中的where条件,在数据库中提取与应用浅析 。在这里,我直接给出分析后的结果:

  • Index key:pubtime > 1 and puptime < 20。此条件,用于确定SQL在idx_t1_pu索引上的查询范围。
  • Index Filter:userid = ‘hdc’ 。此条件,可以在idx_t1_pu索引上进行过滤,但不属于Index Key。
  • Table Filter:comment is not NULL。此条件,在idx_t1_pu索引上无法过滤,只能在聚簇索引上过滤。
    在分析出SQL where条件的构成之后,再来看看这条SQL的加锁情况 (RR隔离级别),如下图所示:
    在这里插入图片描述
    从图中可以看出,在Repeatable Read隔离级别下,由Index Key所确定的范围,被加上了GAP锁;Index Filter锁给定的条件 (userid = ‘hdc’)何时过滤,视MySQL的版本而定,在MySQL 5.6版本之前,不支持Index Condition Pushdown(ICP),因此Index Filter在MySQL Server层过滤,在5.6后支持了Index Condition Pushdown,则在index上过滤。若不支持ICP,不满足Index Filter的记录,也需要加上记录X锁,若支持ICP,则不满足Index Filter的记录,无需加记录X锁 (图中,用红色箭头标出的X锁,是否要加,视是否支持ICP而定);而Table Filter对应的过滤条件,则在聚簇索引中读取后,在MySQL Server层面过滤,因此聚簇索引上也需要X锁。最后,选取出了一条满足条件的记录[8,hdc,d,5,good],但是加锁的数量,要远远大于满足条件的记录数量。
    结论:在Repeatable Read隔离级别下,针对一个复杂的SQL,首先需要提取其where条件。Index Key确定的范围,需要加上GAP锁;Index Filter过滤条件,视MySQL版本是否支持ICP,若支持ICP,则不满足Index Filter的记录,不加X锁,否则需要X锁;Table Filter过滤条件,无论是否满足,都需要加X锁。

死锁原理与分析

  • 本文前面的部分,基本上已经涵盖了MySQL/InnoDB所有的加锁规则。深入理解MySQL如何加锁,有两个比较重要的作用:
    可以根据MySQL的加锁规则,写出不会发生死锁的SQL;
    可以根据MySQL的加锁规则,定位出线上产生死锁的原因;
  • 下面,来看看两个死锁的例子 (一个是两个Session的两条SQL产生死锁;另一个是两个Session的一条SQL,产生死锁):
    在这里插入图片描述
    在这里插入图片描述
  • 上面的两个死锁用例。第一个非常好理解,也是最常见的死锁,每个事务执行两条SQL,分别持有了一把锁,然后加另一把锁,产生死锁。
  • 第二个用例,虽然每个Session都只有一条语句,仍旧会产生死锁。要分析这个死锁,首先必须用到本文前面提到的MySQL加锁的规则。针对Session 1,从name索引出发,读到的[hdc, 1],[hdc, 6]均满足条件,不仅会加name索引上的记录X锁,而且会加聚簇索引上的记录X锁,加锁顺序为先[1,hdc,100],后[6,hdc,10]。而Session 2,从pubtime索引出发,[10,6],[100,1]均满足过滤条件,同样也会加聚簇索引上的记录X锁,加锁顺序为[6,hdc,10],后[1,hdc,100]。发现没有,跟Session 1的加锁顺序正好相反,如果两个Session恰好都持有了第一把锁,请求加第二把锁,死锁就发生了。
  • 结论:死锁的发生与否,并不在于事务中有多少条SQL语句,死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。而使用本文上面提到的,分析MySQL每条SQL语句的加锁规则,分析出每条语句的加锁顺序,然后检查多个并发SQL间是否存在以相反的顺序加锁的情况,就可以分析出各种潜在的死锁情况,也可以分析出线上死锁发生的原因。
  • 如何解决死锁呢?
    • MySQL默认会主动探知死锁,并回滚某一个影响最小的事务。等另一个事务执行完成之后,再重新执行该事务。
      如何避免死锁?
  • 注意程序的逻辑:根本的原因是程序逻辑的顺序,最常见的是交差更新
    • Transaction 1: 更新表A -> 更新表B
    • Transaction 2: 更新表B -> 更新表A
    • Transaction获得两个资源
  • 保持事务的轻量 越是轻量的事务,占有越少的锁资源,这样发生死锁的几率就越小。
  • 提高运行的速度 避免使用子查询,尽量使用主键等等。
  • 尽量快提交事务,减少持有锁的时间 越早提交事务,锁就越早释放。

扩展点

要做到完全掌握MySQL/InnoDB的加锁规则,甚至是其他任何数据库的加锁规则,需要具备以下的一些知识点:

  • 了解数据库的一些基本理论知识:数据的存储格式 (堆组织表 vs 聚簇索引表);并发控制协议 (MVCC vs Lock-Based CC);Two-Phase Locking;数据库的隔离级别定义 (Isolation Level);
  • 了解SQL本身的执行计划 (主键扫描 vs 唯一键扫描 vs 范围扫描 vs 全表扫描);
  • 了解数据库本身的一些实现细节 (过滤条件提取;Index Condition Pushdown;Semi-Consistent Read);
  • 了解死锁产生的原因及分析的方法 (加锁顺序不一致;分析每个SQL的加锁顺序)
开课吧-javaEE企业级分布式高级架构师是一门专注于培养企业级应用开发的高级技术课程。该课程旨在帮助学员全面掌握Java EE企业级开发的技能和知识,培养他们成为具备分布式应用系统设计和架构能力的高级架构师。 在这门课程中,学员将学习Java EE的核心概念和技术,包括Servlet、JSP、JDBC、EJB、JNDI等。同时,学员还将深入学习分布式应用开发的相关技术,如Web服务、消息队列、分布式缓存、负载均衡等。除此之外,课程还将涉及如何使用流行的Java EE开发框架(如Spring、Hibernate等)进行企业应用开发,并介绍分布式系统的设计原则和最佳实践。 通过学习这门课程,学员将能够了解分布式应用架构的基本原理,并具备设计和构建分布式应用系统的能力。他们将熟练掌握Java EE平台的各种技术和工具,能够灵活运用它们开发高性能、可扩展性强的企业级应用系统。此外,通过课程中的实战项目,学员还将锻炼解决实际问题和项目管理的能力。 作为一门高级架构师的课程,它将帮助学员进一步提升自己的职业发展。毕业后,学员可以在企业中担任分布式应用的架构师、系统设计师、技术经理等角色,负责企业级应用系统的设计和开发。此外,他们还可以选择独立开发,提供技术咨询和解决方案。 总之,开课吧-javaEE企业级分布式高级架构师是一门非常有价值的课程,它将帮助学员掌握Java EE企业级开发的核心技术和分布式应用架构的设计原理,培养他们成为具备高级架构师能力的软件开发专业人士。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

讲文明的喜羊羊拒绝pua

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值