数据分析
yangxiaodong88
让编程更简单,用好轮子,创造轮子。
展开
-
numpy 安装
背景这是一个最好的时代,也是最有机遇的时代。从一无所有到翻身改变,学习是捷径的捷径。数据方面我很感兴趣,现在工作中没有用到,但是我想感受下,就学习了。 现在学习数据分析,先从时代背景上来说,这是一个数据的时代,数据的重要性我 就不说了, 每天产生的数据很多,要让这些数据有意义就要学习相关的技术了。发明轮子的活很多人都已经做了。我现在能做的就是先把别人发明的轮子给用好。 个人认为,干技术的一天不原创 2018-01-13 17:21:15 · 365 阅读 · 0 评论 -
numpy 多位数组的运用
背景写一个脚本读取。csv 文件存入数据库,本来是想使用DictReader 来直接生成字典,sqlalcharm 直接插入数据库,但是由于文件是产品使用,填写,都是英文 列头 看不太明白,行列也不是可以直接使用的设计。如果按照容易插入数据但是 这样使用文档的时候不方便。所以我就转换了一些。御用到了 numpy 多维数组,按照列每列都是一个 数据对象。使用到二维数组,通过坐标来读取下原创 2018-01-16 19:42:33 · 289 阅读 · 0 评论 -
pandas 之DataFrame
表格型数据结构DataFrame 是一个表格型数据结构, 她含有一组有序的列, 每列可以是不同的值类型。(数值, 字符串, 布尔型等)。DataFrame既有行索引也有列索引,他可以看成是由Series组成的字典(共用同一个索引)。DataFrame 中的数据是以一个或者多个二位块存放的(而不是列表)不是列表, 字典或者别的一维数据结构。构建DataFrame1 最常用的是直接传入...原创 2018-06-12 10:53:51 · 631 阅读 · 0 评论 -
pandas Series DataFrame 综合学习
综合学习分析索引对象pandas 中的索引对象负责管理轴标签和其他元数据(比如轴名称)from pandas import Seriesobj = Series(range(3), index=['a', 'b', 'c'])index = obj.indexprint(index) # Index(['a', 'b', 'c'], dtype='object')prin...原创 2018-06-13 18:05:58 · 268 阅读 · 0 评论 -
pandas Series DataFrame 综合学习(2)
函数应用映射numpy 的ufuncs(元素级数组方法) 也可以用来操作pandas对象frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'), index=['one', 'two', 'three', 'four'] )pr...原创 2018-06-15 14:58:53 · 220 阅读 · 0 评论 -
pandas 之series
Series 的常用方法属性等获取Series 中的值1.obj = Series([2, 4, 7])print(obj)print(obj[0])print(obj[1])print(obj[2])输出# 0 2# 1 4# 2 7# dtype: int64# 2# 4# 72,有index 索引 获取值obj2 = Se...原创 2018-06-08 18:33:29 · 282 阅读 · 0 评论 -
pandas Series DataFrame 综合学习(3)
DataFrame 合并from pandas import DataFrame, Seriesimport pandas as pddf1 = DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7) })df2 = DataF...原创 2018-06-20 17:12:53 · 133 阅读 · 0 评论 -
优化过程查看数据库连接 以及查看对应线程
查看数据库连接select * from information_schema.processlist order by Time desc;HOST 字段 后面的端口号很重要通过端口号可以查到 是哪个线程在占用这个连接线程 在程序运行的机器上面 查看进程端口号 查看到相关进程信息 netstat -apn |grep 45392效果tcp 0 ...原创 2018-08-24 11:31:05 · 1171 阅读 · 0 评论